Software: the good, the bad and the ugly

Festival of Genomics 2017

Russell Hamilton rsh46@cam.ac.uk

Bioinformatics Software

W Y Z

All software contains bugs:

- Industry Average: "about 15 50 errors per 1000 lines of delivered code" Steve McConnell (author of Code Complete and Software Estimation: Demystifying the Black Art)
- Range from spelling mistake in error message to completely incorrect results
- Most software will process the input to produce an output without errors or warnings

Never blindly trust software or pipelines

- Always test and validate results
- Avoid **black box** software (*definition: produces results, but no one knows how*)

Software X

W

Different classes of bioinformatics software

	Class	Examples	Description
Z	Processing	TopHat2, Bowtie2	Performing computationally intensive task, applying mathematical models
	Evaluation	FastQC, BamQC	Deriving QC metrics from output files
	Converters	SamToFastq (Picard Tools)	Simply converting between file formats. Generally stable no regular updates
	Pipelines	Galaxy, ClusterFlow	The glue for joining software to create an automated pipeline

12 Step Guide for evaluating and selecting bioinformatics software tools

- 1. Finding Software to do the job
- 2. Has the software been published?
- 3. Software Availability
- 4. Documentation Availability
- 5. Presence on user groups
- 6. Installation and Running
- 7. Errors and Log Files
- 8. Use standard file formats
- 9. Evaluating Commercial Software
- 10. Bugs in scripts / pipelines to run software
- 11. Writing your own software
- 12. Using and creating pipelines

1. Finding software to do the job

Identify the required task

Are there related studies performing similar analysis? Publication / posters / talks

Required features

Alignment of **methylation** sequencing data to reference genome

Developmental Cell

Resource

Global Landscape and Regulatory Principles of DNA Methylation Reprogramming for Germ Cell Specification by Mouse Pluripotent Stem Cells

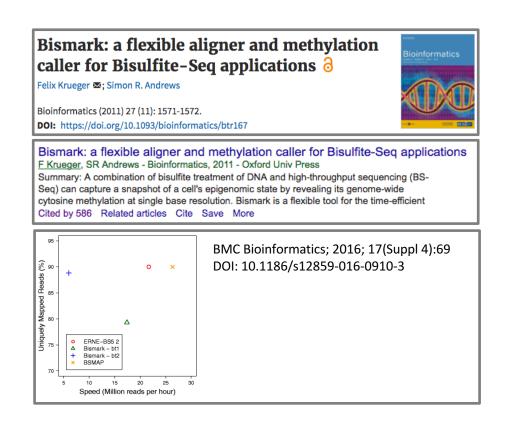
Kenjiro Shirane,^{1,2} Kazuki Kurimoto,^{3,4} Yukihiro Yabuta,^{3,4} Masashi Yamaji,^{3,4,10} Junko Satoh,⁵ Shinji Ito,⁵ Akira Watanabe,^{6,7} Katsuhiko Hayashi,^{3,8,9} Mitinori Saitou,^{3,4,6,7,*} and Hiroyuki Sasaki^{1,11,*}

Must Have

- 1. INPUT standard FASTQ format files
- 2. OUTPUT standard BAM alignments
- 3. OUTPUT Compatible with methylKit

Like to have

- 1. Perform methylation calls
- 2. Must make use of multi processors for large numbers of samples



2. Has the software been published?

- Published in a peer reviewed journal
 As stand alone software or part of study
- Cited by other peer reviewed papers
- Has the software been benchmarked (by other people than the authors)

Short read mapping is "generally solved problem" Informative for run times

Software: What's good, bad and ugly

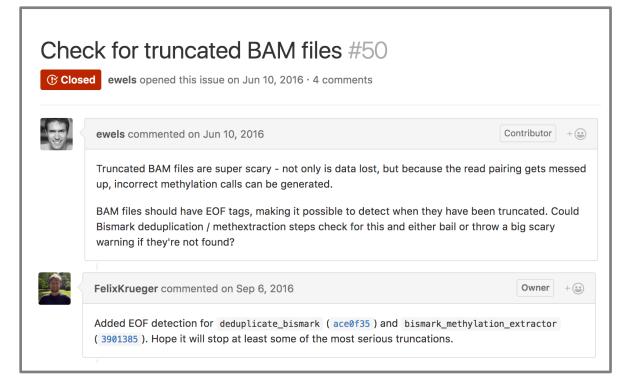
3. Software Availability

- Software available for download Hosted on a recognised software repository e.g. GitHub, BitBucket, SourceForge
- Software regularly updated / bugs fixed / releases
 More than one developer (e.g. group account)

Permanent archive of software releases e.g. zenodo.org, figshare.com

University / Institute / Company Web site
 Software is the responsibility of a group not just an individual

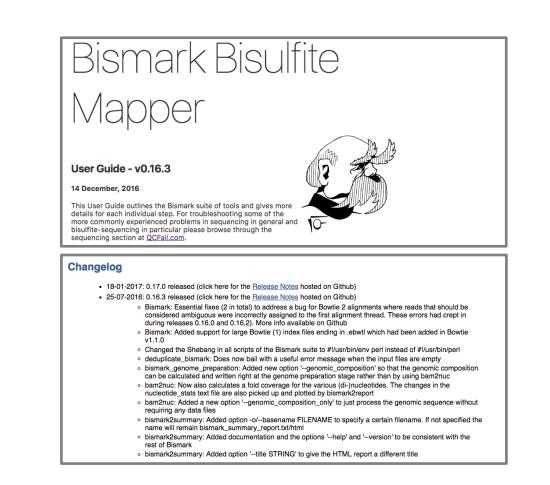
FelixKrueger / Bismark				O Unwatch → 10 ★ Star 20 § Fork 8			
Code 🕛 Issues 1 👘 P	ull requests 0	jects 0 + Pulse	III Graphs				
ool to map bisulfite converte	d sequence reads and	determine cytosine me	thylation sta	tes			
1 360 commits	2 branches	S 46 releases	11 6 c	ontributors		ೆ GPL-3.0	
0							
iranch: master - New pull request			Create new file	Upload files	Find file	Clone or download -	
FelixKrueger Added CpG-report	filtering for optiopnNOMe	e-Seq		L	atest comm	nit 1332fbd 3 hours ago	
Docs	Fixed merge conflic					27 days ago	
bismark_sitrep	bismark2report - fix	ed deduplication section	уро			a month ago	
Bismark_alignment_modes.pdf	Just made a new rel	ease 0.10.0				3 years ago	
README.md	Rewrote main readm	ne. Removed nbsp.				3 months ago	
RELEASE_NOTES.md	Update RELEASE_N	OTES.md				29 days ago	
bam2nuc	Another bug fix for a	ambiguous alignments				6 months ago	
bismark	Fixed path handling	formulticore mode and	prefix			2 days ago	
bismark2bedGraph	Update bismark2be	dGraph				a month ago	
bismark2report	bismark2report - ml	bias fixes				a month ago	
bismark2summary	Another bug fix for a	ambiguous alignments				6 months ago	
bismark_genome_preparation	Changing to genom	e dir again if had been spe	cified. Closes	#74.		2 months ago	
bismark_methylation_extractor	Moved the detection	n of the path to Samtools	to occurr a littl	e earlier		4 months ago	
copy_bismark_files_for_release.	Adding optional filte	ring of non-converted rea	ds			2 months ago	
coverage2cytosine	Added CpG-report f	iltering for optiopnNON	le-Seq			3 hours ago	
deduplicate_bismark	Single-/paired-end	detection now also accept	s1 or2			4 months ago	
filter_non_conversion	updated non conver	sion				2 days ago	
license.txt	Added documentati	on files to the repository,	version release	ed as v0.1		7 years ago	
test_data.fastg	Added test data					4 months ago	



3. Software Availability

Bugs are reported and fixed

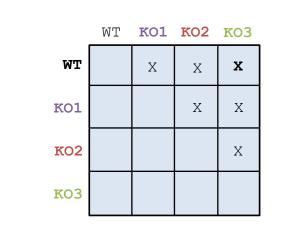
New feature requests are added



4. Documentation Availability

User Documentation

Release Documentation
 Versions – aids reproduceability



4. Documentation Availability

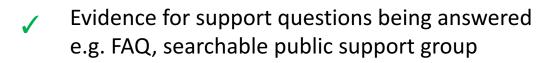
Example: RNA-Seq Differential Gene analysis using DESeq2 Discover limitations

<i>Name</i> WT1	<i>fileName</i> wt1.htseq_counts.txt	<i>genotype</i> WT
WT2	wt2.htseq_counts.txt	WT
WT3	wt3.htseq_counts.txt	WT
KO1.1	ko1.1.htseq_counts.txt	KO1
KO1.2	ko1.2.htseq_counts.txt	KO1
KO1.3	ko1.3.htseq_counts.txt	KO1
KO2.1	ko2.1.htseq_counts.txt	KO2
KO2.2	ko2.2.htseq_counts.txt	KO2
KO2.3	ko2.3.htseq_counts.txt	KO2
KO3.1	ko3.1.htseq_counts.txt	KO3
KO3.2	ko3.2.htseq_counts.txt	KO3
KO3.3	ko3.3.htseq_counts.txt	KO3

DESeq2 Manual

"The results function without any arguments will automatically perform a contrast of the last level of the last variable in the design formula over the first level."

- count.data
 - <- DESeqDataSetFromMatrix(sampleTable=smplTbl,</pre> design= \sim aenotype)
- count.data <- DESeq(count.data)
- X binomial.result <- results(count.data)</pre>



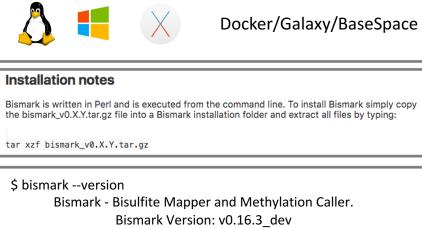
/ binomial.result <- results(count.data, contrast=c("genotype","K01","K02"))
</pre>

5. Presence on user groups

Is there someone near by you can ask for help

http://seqanswers.com				
Bismark - A New Tool for Mapping and Analysis of Bisulfite-Seq Data & () ([] 1 2 3 Last Page) fkrueger	12-07-2016 08:56 PM by <u>fkrueger</u> 🔊	<u>609</u>	120,554	
https://www.biostars.org				
GitHub Issues				
Google Groups				
Bioinformatics Core Facility				
Research group down the corridor				

6. Installation and Running


Will run on standard architecture

Easy to install

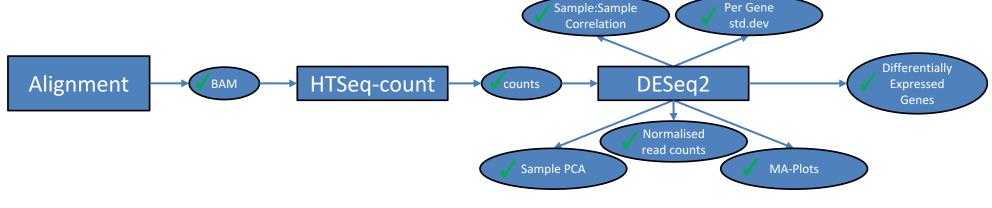
Release versions

Default parameters

Source code available
 Binaries can simplify installation

Copyright 2010-15 Felix Krueger, Babraham Bioinformatics www.bioinformatics.babraham.ac.uk/projects/

A sensible set of default parameters that are likely to produce a good first pass at the results



6. Installation and Running

Example: Traceability of results though the steps in the analysis

Intermediate results are excellent check points

RNA-Seq Differential Gene Expression Analysis

7. Errors and Log Files

Keep and read log files for software run

Warnings

Errors

Don't ignore warnings, they may be telling you something crucial about your data

Problem severe enough for the program to stop and produce an error

8. Use standard file formats

Bioinformaticians spend an embarrassing amount of time converting between file formats

✓ Standard Input Files

Standard Output Files

FASTA,	FASTQ
,	

Converting between formats could introduce errors

BAM

Compatible with downstream tools

9. Evaluating Commercial Software

Should you use commercial software to do RNA-Seq DGE analysis?

Lots of good commercial software available e.g. Partek

Pros	Cons
Graphical Interface – no command line	Run analysis without understanding the steps
Single application for all steps	Harder to trace back step by step
Dedicated Customer Support	Limited user group activity
	Less transparency (methods / bugs fixed)
	Expensive
	License required to reproduce analysis (e.g. reviewers)

10. Bugs in scripts / pipelines to run software

Often written specifically for each analysis or project and are prone to bugs

Examples of accidentally missing out samples

```
1. Bash Script for running fastQC
for file in *_1.fq.gz;
do
   fastqc $file
done
```

multiqc .

11. Utilising dedicated Pipeline tools

The bad and ugly

- Home made "glue" scripts for running software can be bug prone
- "dark script matter" isn't reviewed or assesses and rarely released in methods sections
- In a 3000 sample study, errors are propagated 3000 times!

The good

- Purpose build pipeline tools
- Premade pipelines for e.g. RNA-Seq differential gene expression
- Job queuing Load balancing across hardware (laptop to cluster farm)
- Log files track a samples progress through pipeline

11. Utilising dedicated Pipeline tools

Galaxy https://usegalaxy.org/	Interaction via a web browser Public and private server installs Many pre-built pipelines Large user community
Flow http://clusterflow.io/	Command line interface Many pre-built pipelines
Common Workflow Language https://github.com/common-workflow-language	A language for building your own pipelines Utilised by other pipeline tools e.g. NextIO

12. Developing your own software

If you are sure a great piece of software doesn't already exist or can be modified for the task

Developing your own tools gives an appreciation of how difficult it can be

EDITORIAL

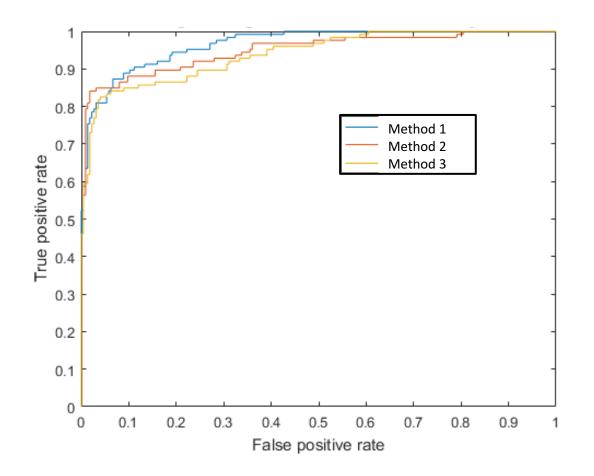
Ten Simple Rules for Developing Usable Software in Computational Biology

Markus List¹⁰*, Peter Ebert^{1,20}*, Felipe Albrecht^{1,2}

1 Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany, 2 Graduate School of Computer Science, Saarland Informatics Campus, Saarbrücken, Germany Rule 1: Identify the Missing Pieces Rule 2: Collect Feedback from Prospective Users Rule 3: Be Ready for Data Growth Rule 4: Use Standard Data Formats for Input and Output Rule 5: Expose Only Mandatory Parameters Rule 6: Expect Users to Make Mistakes Rule 7: Provide Logging Information Rule 8: Get Users Started Quickly Rule 9: Offer Tutorial Material Rule 10: Consider the Future of Your Tool

Weighting the evaluation criteria

	Criteria	Importance	Comments		
1	Finding Software to do the job	+++++	Use the right tools for the job		
2	Has the software been published?	+++	New software being released so check for improved methods. Just because its published and well used doesn't mean it's still the best		
3	Software Availability	++			
4	Documentation Availability	+++++	Openpass it a good sign for finding error (bugs / suggesting feature		
5	Presence on user groups	+++++	Openness it a good sign for finding error / bugs / suggesting feature enhancements		
6	Installation and Running	+++			
7	Errors and Log Files	+++++			
8	Use standard file formats	++++	Conversions could add sources of error		
9	Evaluating Commercial Software	+	Price Vs Open source software		
	Bugs in scripts / pipelines to run software	+++++	Pipelines standardise workflows		
11	Utilising dedicated pipeline tools	+			
12	Writing your own software	+	Don't re-inventing the wheel		


Weighting the evaluation criteria

Compromises for run time vs accuracy/sensitivity

Project A has 3000 samples vs Project B with 12 samples

Method 1: 4 hours per sample 98% accuracy Method 2: 30 mins per sample 97% accuracy

What would you choose if Method 1: 4 hours per sample 98% accuracy Method 3: 15 mins per sample **90**% accuracy

Summary

Many ways to evaluate software

- Openness and engagement with users is very important
 bugs fixed, features added, large user base
- Evaluate features, e.g. run time, against your project requirements
- If you are using pipelines, use purpose build pipelining tools

