

Day 1 Experimental design

Anne Segonds-Pichon v2019-06

Universal principles

- The same-ish questions should always be asked
 - What is the question?
 - What measurements will be made?
 - What factors could influence these measurements?
- But the answers/solutions will differ between areas

- <u>Examples</u>:
 - Experimental design will be affected by the question
 - but also by practical feasibility, factors that may affect causal interpretation ...
 - e.g. number of treatments, litter size, number plants per bench ...
 - Sample size will be affected by ethics, money, model ...
 - e.g. mouse/plant vs. cell, clinical trials vs. lab experiment ...
 - Data exploration will be affected by sample size, access to raw data ...
 - e.g. >20.000 genes vs. weight of a small sample of mice

Vocabulary, tradition and software

- People use different words to describe the same data/graphs ...
- There are different traditions in different labs, areas of science ...
- Different software mean different approaches: R, SPSS, GraphPad, Stata, Minitab ...
- Examples:
 - Variable names: qualitative data = attribute
 - Scatterplots in GraphPad Prism = stripchart in R
 - 2 treatment groups in an experiment = 2 arms of a clinical trial
 - Replicate = repeat = sample
 - QQ plots in SPSS versus D'Agostino-Pearson test ...
 - Sample sizes
- Very different biological questions, very different designs, sophisticated scientific approach or very simple
 - Similar statistical approach
 - <u>Example</u>:
 - Data: Gene expression values from The Cancer Genome Atlas for samples from tumour and normal tissue, question: which genes are showing a significant difference? t-test
 - **Data**: weight from WT and KO mice, **question**: difference between genotypes? *t*-test

Experimental Design Statistical Analysis

- Translate the hypothesis into statistical questions
 - Think about the statistical analyses before you collect any data
- What data will I collect?
- How will it be recorded/produced?
- Will I have access to the raw data?
- I have been told to do this test/use that template, is that right?
- Do I know enough stats to analyse my data?
 - If not: ask for help!

- <u>Example</u>:
 - **Hypothesis**: exercise has an effect on neuronal density in the hippocampus.
 - **Experiment**: 2 groups of mice on 2 different levels of activity:
 - No running or running for 30 minutes per day
 - After 3 weeks: mice are euthanized and histological brain sections are prepared
 - Neuronal density by counting the number of neurons per slide
 - Stats: <u>one factor</u>: activity and <u>one outcome</u>: number of neurons

Experimental Design Statistical Analysis

• Experiment: exercise has an effect on neuronal density in the hippocampus

- Experimental unit: cell, tissue sample, leaf, mouse, plant, litter ...
 - Neuronal density experiment: <u>experimental unit</u>: **mouse**
- Factor:
 - Fixed factor: factor of interest, predictor, grouping factor, arm in controlled trial, independent variable ...
 - e.g. : treatment, gender, genotype ...
 - Neuronal density experiment: <u>fixed factor</u>: **running**
 - Random factor: factor we need to account for, blocking factor, nuisance factor ...
 - e.g. : experiment, batch, plate, lanes ...
 - Neuronal density experiment: **uh oh**
- Key concepts:
 - Blinding: not always possible, single and double-blinding
 - Randomisation

Experimental Design Type of design

Experimental Design Type of design

Completely random Complete Randomised block CRD **CRBD** 0.0 0.0 **Bad design** Control Treatment 9 Day1, Plate 1 Day2, Plate 2 Day3, Plate 3 Mouse 6 Mouse 1 1 2 3 4 5 6 123 Mouse 2 Mouse 7 Mouse 3 Mouse 8 Mouse 4 Mouse 9 Mouse 5 Mouse 10 -0.02 -0.04 Control Treatment 2 Treatment 1 Differences between Control, Treatment 1 and Treatment 2 are confounded by day and plate. Control Treatment 1 Treatment 2 0.08 0.04 Plate 2 Plate 3 Plate 2 Plate 3 Plate 1 Plate 1 10.942 Х

1

Good design: GenADA multi-site collaborative study 2010

Alzheimer's study on 875 patients

Controls and Cases

http://blog.goldenhelix.com/?p=322

Experimental Design

Complete Randomised block

- **<u>RNA-Seq experiments</u>**: multiplexing allows for randomization
 - Multiplexing: barcodes attached to fragments
 - Barcodes: distinct between libraries (samples)
 - Important: identify the sources of noise (nuisance variable)
 - Library preparation: big day-to-day variability
 - Batch effect
 - Big variability between runs
 - Lane effect

Type of design

Experimental Design Type of design

Incomplete Randomised block

Six samples

<u>RNA-Seq experiments</u>:

- Incomplete block design:
 - All treatments/samples are not present in each block
- Balanced Incomplete Block Design (BIBD):
 - where all pairs of treatments/samples occur together within a **block** an equal number of times

Five samples per lanes

Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6
S1	S1	S1	S1	<u>\$1</u>	<u>S2</u>
<u>\$2</u>	S2	<u>S2</u>	S2	S 3	S 3
S 3	S3	S 3	S4	S4	S4
S4	S4	S5	S5	S5	S5
S5		S6		56	56

- Statistical analysis:
 - account for missing values
 - e.g.: a model fits blocks then samples

• Example: *in vivo* effect of a drug on gene expression on 2 tissues.

- More complex design:
 - Split-plot + Completely Random Design: commonly used for repeated measures designs

Experimental Design Type of design

• Other designs: crossover, sequential

Factorial Design : more an arrangement of factors than a design

- When considering more than one factor
- Back to our neuronal density experiment: exercise has an effect on neuronal density in the hippocampus

- Not enough: we want to account for:
 - <u>Sex</u>: factor of interest: **factorial design** (2 factors: running and sex)
 - <u>Experimental variability</u>: random factor: **blocking factor (one experiment = one block)**
 - <u>Several histological slides</u>: nested variable

Experimental Design Type of design

• Neuronal density experiment: Complete Randomised block design + Split-plot

- Rule of thumb: Block what you can, randomize what you cannot
 - **Blocking** is used to remove the effects of a few of the most important nuisance variables (known/controllable)
 - **Randomisation** is then used to reduce the contaminating effects of the remaining nuisance variables (unknown/uncontrollable, lurking).
- Drawing the experimental design can help!

Experimental Design Statistical Analysis

• Experiment: exercise has an effect on neuronal density in the hippocampus

• Statistical tests are tools used to quantify our level of confidence in what we see.

Statistical Analysis

- Statistical tests are tools
 - How do we choose the right tool?

- The 'job' = the question(s)
 - The main one: cause → effect
 - What (can) affects that relationship?
 - Both technical and biological

• Data

- Nature and behaviour of the data:
 - All statistical tests are associated with assumptions
 - e.g. normality and homogeneity of variance
 - If assumptions not met: bad p-values
- Running a statistical test is easy
 - but making sure it's the right test is not.
- Getting to know the data:
 - Data exploration
 - But also if not one's data:
 - raw or not raw?
 - If normalised/standardised, how?
 - e.g raw counts (qualitative data) vs. normalised (quantitative)

Experimental Design Technical vs. Biological

- Definition of **technical** and **biological** depends on the model and the question
 - e.g. mouse, cells ...
- <u>Question</u>: Why **replicates** at all?
 - To make **proper inference** from sample to general population we need biological samples.
 - <u>Example</u>: difference on weight between grey mice and white mice:
 - cannot conclude anything from one grey mouse and one white mouse randomly selected
 - only 2 biological samples
 - need to repeat the measurements:
 - measure 5 times each mouse: **technical replicates**
 - measure 5 white and 5 grey mice: **biological replicates**
- <u>Answer</u>: Biological replicates are needed to infer to the general population

- Definition of **technical** and **biological** depends on the model and the question.
- The model: mouse, plant ... complex organisms in general.
 - Easy: one value per individual organism
 - e.g. weight, neutrophils counts ...

• <u>What to do</u>? Mean of technical replicate<u>s</u> = 1 biological replicate

- The model is still: mouse, plant ... complex organisms in general.
 - Less easy: more than one value per individual
 - e.g. axon degeneration

- <u>What to do</u>? Not one good answer.
 - In this case: mouse = experiment unit (block, split-plot)
 - axons = technical replicates, nerve segments = biological replicates

- The model is : worms, cells ...
 - Less and less easy: many 'individuals'
 - What is 'n' in cell culture experiments?

Control

- Cell lines: no biological replication, only technical replication
- To make valid inference: valid design

Vial of frozen cells

Dishes, flasks, wells ... Cells in culture **Point of Treatment**

Treatment

Glass slides microarrays lanes in gel wells in plate

Point of Measurements

• <u>Design 1</u>: As bad as it can get

- After quantification: 6 values
 - But what is the sample size?
 - n = 1
 - no independence between the slides
 - variability = pipetting error

• <u>Design 2</u>: Marginally better, but still not good enough

- After quantification: 6 values
 - But what is the sample size?
 - n = 1
 - no independence between the plates
 - variability = a bit better as sample split higher up in the hierarchy

• <u>Design 3</u>: Often, as good as it can get

- After quantification: 6 values
 - But what is the sample size?
 - n = 3
 - Key difference: the whole procedure is repeated 3 separate times
 - Still technical variability but done at the highest hierarchical level
 - Results from 3 days are (mostly) independent
 - Values from 2 glass slides: paired observations

• <u>Design 4</u>: The ideal design

- After quantification: 6 values
 - But what is the sample size?
 - n = 3
 - Real biological replicates

Technical vs. Biological

Technical and biological replicates What to remember

- Take the time to identify technical and biological replicates
- Try to make the replications as independent as possible
- Never ever mix technical and biological replicates
- The hierarchical structure of the experiment needs to be respected in the statistical analysis (nested, blocks ...).

Experimental Design Common Sense

- Design your experiment to be analysable
- The gathering of results or carrying out of a procedure is not the end goal
 - Think about the analysis of the data and design the experiment accordingly
- Imagine how your results will look
- Ask yourself whether these results will address your hypothesis
- Don't get fixated on being able to perform a cool technique or experimental protocol.
- Don't be overwhelmed (or try not to be).
- Draw your experiment and imagine all that can go wrong at each step

Day 1 Power Analysis

Anne Segonds-Pichon v2019-06

- Definition of power: probability that a statistical test will reject a false null hypothesis (H₀).
 Translation: the probability of detecting an effect, given that the effect is really there.
- In a nutshell: the bigger the experiment (big sample size), the bigger the power (more likely to pick up a difference).
- Main output of a **power analysis**:
 - Estimation of an appropriate sample size
 - Too big: waste of resources,
 - Too small: may miss the effect (p>0.05)+ waste of resources,
 - Grants: justification of sample size,
 - **Publications:** reviewers ask for power calculation evidence,
 - Home office: the 3 Rs: Replacement, Reduction and Refinement.

What does Power look like?

Х

What does Power look like? Null and alternative hypotheses

- Probability that the observed result occurs if H_0 is true
 - H₀: **Null hypothesis** = absence of effect
 - H₁: **Alternative hypothesis** = presence of an effect

What does Power look like? Type I error α

- α : the threshold value that we measure p-values against.
 - For results with 95% level of confidence: $\alpha = 0.05$
 - = probability of type I error
- **p-value**: probability that the observed statistic occurred by chance alone
- Statistical significance: comparison between α and the p-value
 - p-value < 0.05: reject H_0 and p-value > 0.05: fail to reject H_0

What does Power look like? Power and Type II error β

- **Type II error** (**β**) is the failure to reject a <u>false</u> H₀
 - Probability of missing an effect which is really there.
 - **Power**: probability of detecting an effect which is really there
 - Direct relationship between **Power** and **type II error**:
 - Power = 1β

What does Power look like? Power = 80%

- **Type II error** (β) is the failure to reject a <u>false</u> H₀
 - Probability of missing an effect which is really there.
 - **Power**: probability of detecting an effect which is really there
 - Direct relationship between **Power** and type II error:
 - if **Power** = 0.8 then β = 1- **Power** = 0.2 (20%)
 - Hence a true difference will be missed 20% of the time
 - General convention: 80% but could be more
 - Cohen (1988):
 - For most researchers: Type I errors are four times more serious than Type II errors so 0.05 * 4 = 0.2
 - Compromise: 2 groups comparisons:
 - 90% = +30% sample size
 - 95% = +60%s sample size

What does Power look like? Critical value

 In hypothesis testing, a critical value is a point on the test distribution that is compared to the test statistic to determine whether to reject the null hypothesis

- Example of test statistic: t-value
- Absolute value of **test statistic** > **critical value** = statistical significance
 - Example: t-value > critical t-value -> p<0.05

To recapitulate:

- The null hypothesis (H₀): H₀ = no effect
- The aim of a statistical test is to reject or not H_{0.}

Statistical decision	True state of H ₀		
	H ₀ True (no effect) H ₀ False (effe		
Reject H _o	Type I error α	Correct	
	False Positive 💋	True Positive 💆	
Do not reject H ₀	Correct (00)	Type II error β	
	True Negative 🔝	False Negative 💋	

- Traditionally, a test or a difference are said to be "significant" if the probability of type I error is: α =< 0.05
- High specificity = low False Positives = low Type I error
- High sensitivity = low False Negatives = low Type II error

The power analysis depends on the relationship between 6 variables:

- the difference of biological interest
 the variability in the data (standard deviation)
- the significance level (5%)
- the desired power of the experiment (80%)
- the sample size
- the alternative hypothesis (ie one or two-sided test)

Effect size

The effect size: what is it?

- The **effect size**: minimum meaningful effect of biological relevance.
 - Absolute difference + variability
- How to determine it?
 - Substantive knowledge
 - Previous research
 - Conventions
- Jacob Cohen
 - Author of several books and articles on power
 - Defined small, medium and large effects for different tests

	Relevant	I	Effect Size Threshold		
Test	effect size	Small	Medium	Large	
t-test for means	d	0.2	0.5	0.8	
F-test for ANOVA	f	0.1	0.25	0.4	
t-test for correlation	r	0.1	0.3	0.5	
Chi-square	w	0.1	0.3	0.5	
2 proportions	h	0.2	0.5	0.8	

The effect size: how is it calculated? The absolute difference

- It depends on the type of difference and the data
 - Easy example: comparison between 2 means

Absolute difference

Effect Size =

[Mean of experimental group] – [Mean of control group]

Standard Deviation

The bigger the effect (the absolute difference), the bigger the power
 = the bigger the probability of picking up the difference

http://rpsychologist.com/d3/cohend/

The effect size: how is it calculated? The standard deviation

• The bigger the variability of the data, the smaller the power

Power Analysis

The power analysis depends on the relationship between 6 variables:

- the difference of biological interest
- the standard deviation
- the significance level (5%) (p< 0.05) α
- the desired power of the experiment (80%) β
- the sample size
- the alternative hypothesis (ie one or two-sided test)

The sample size

- Most of the time, the output of a power calculation.
- The bigger the sample, the bigger the power
 - but how does it work actually?
- In reality it is difficult to reduce the variability in data, or the contrast between means,
 - most effective way of improving power:
 - increase the sample size.
- The standard deviation of the sample distribution= Standard Error of the Mean: **SEM** =SD/VN
 - SEM decreases as sample size increases

SEM: standard deviation of the sample distribution

The sample size

A population

random

The sample size

The sample size: the bigger the better?

• It takes huge samples to detect tiny differences but tiny samples to detect huge differences.

- What if the tiny difference is meaningless?
 - Beware of **overpower**
 - Nothing wrong with the stats: it is all about interpretation of the results of the test.

- Remember the important first step of power analysis
 - What is the effect size of biological interest?

Power Analysis

The power analysis depends on the relationship between 6 variables:

- the effect size of biological interest
- the standard deviation
- the significance level (5%)
- the desired power of the experiment (80%)
- the sample size
- the alternative hypothesis (ie one or two-sided test)

The alternative hypothesis: what is it?

• One-tailed or 2-tailed test? One-sided or 2-sided tests?

- Is the question:
 - Is the there a difference?
 - Is it bigger than or smaller than?
- Can rarely justify the use of a one-tailed test
- Two times easier to reach significance with a one-tailed than a two-tailed
 - Suspicious reviewer!

• Fix any five of the variables and a mathematical relationship can be used to estimate the sixth.

e.g. What sample size do I need to have a 80% probability (**power**) to detect this particular effect (**difference** and **standard deviation**) at a 5% **significance level** using a **2-sided test**?

• Good news:

there are packages that can do the power analysis for you ... providing you have some prior knowledge of the key parameters!

difference + standard deviation = effect size

- Free packages:
 - R
 - **G*Power** and InVivoStat
 - Russ Lenth's power and sample-size page:
 - <u>http://www.divms.uiowa.edu/~rlenth/Power/</u>

- Cheap package: StatMate (~ \$95)
- Not so cheap package: MedCalc (~ \$495)

Power Analysis Let's do it

- Examples of power calculations:
 - Comparing 2 proportions: <u>Exercise 1</u>
 - Comparing 2 means: **Exercise 2**

Sample Size: Power Analysis

Exercise 1:

- Scientists have come up with a solution that will reduce the number of lions being shot by farmers in Africa: painting eyes on cows' bottoms.
- Early trials suggest that lions are less likely to attack livestock when they think they're being watched
 - Fewer livestock attacks could help farmers and lions co-exist more peacefully.
- Pilot study over 6 weeks:
 - 3 out of 39 unpainted cows were killed by lions, none of the 23 painted cows from the same herd were killed.

Sample Size: Power Analysis

Exercise 1:

- Questions:
 - Do you think the observed effect is meaningful to the extent that such a 'treatment' should be applied? Consider ethics, economics, conservation ...
 - Run a power calculation to find out how many cows should be included in the study.
- Effect size: measure of distance between 2 proportions or probabilities
- Comparison between 2 proportions: Fisher's exact test

Power Analysis Comparing 2 proportions

Sten 2 scholars of Chert	G*Power 3.1.3 File Edit View Tests Calculator Help Central and noncentral distributions Protocol of power analyses
Step 2 : choice of Stati	Stical test
	Exact Correlation: Bivariate normal model Type of power analy Correlation: Bivariate normal model A priori: Computer Correlation: Difference from constant (binomial test, one sample case) Proportion: Difference from constant (binomial test, one sample case) Proportions: Inequality, two dependent groups (McNermar) Proportions: Inequality, two independent groups (Incenditional) Proportions: Inequality, two independent groups (unconditional) Proportions: Inequality (offset), two independent groups (unconditional) Proportion: Sign test (binomial test) · Generic binomial test α err prob 0.05 Total sample size ?
Fisher's exact	Correlation p H0 0 test or Chi-square for 2x2 tables Options X-Y plot for a range of values Calculate

Step 3: Type of power analysis	G*Power	₿ G*Power 3.1.3
Step 3: Type of power analysis	J PUWEI	File Edit View Tests Calculator Help
Test family Statistical test Exact Proportions: Inequality, two independent groups (Fisher's exact test) Type of power analysis A priori: Compute required sample size – given a, power, and effect size Componenties: Compute required sample size – given a, deffect size Compromise: Compute required and pice a, power, and effect size Post hol:: Compute required of – given power, and effect size Post hol:: Compute required of – given power, and sample size – given a, power, and sample size Post hol:: Compute achieved power – given a, power, and sample size Post hol:: Compute achieved power – given a, power, and sample size Power (1-p err prob) 0.05 Actual power ? Allocation ratio N2/N1 1		Central and noncentral distributions Protocol of power analyses
Exact Proportions: Inequality, two independent groups (Fisher's exact test) Type of power analysis A priori: Compute required sample size – given α, power, and effect size Compromise: Compute implied α & power – given β/ or ratio, sample size, and effect size Criterion: Compute achieved power – given α, sample size, and effect size Post hoc: Compute required a – given α, sample size, and effect size Post hoc: Compute achieved power – given α, sample size Post hoc: Compute achieved power – given α, sample size Proportion p2 0.6 α err prob 0.05 Power (1-β err prob) 0.95 Actual power 7 Allocation ratio N2/N1 1	Step 3: Type of power a	analysis
Exact Proportions: Inequality, two independent groups (Fisher's exact test) Type of power analysis A priori: Compute required sample size – given α, power, and effect size Compromise: Compute implied α & power – given β/ or ratio, sample size, and effect size Criterion: Compute achieved power – given α, sample size, and effect size Post hoc: Compute required a – given α, sample size, and effect size Post hoc: Compute achieved power – given β/ or ratio, sample size Proportion p2 0.6 α err prob 0.05 Power (1-β err prob) 0.95 Actual power 7 Allocation ratio N2/N1 1		
Type of power analysis A priori: Compute required sample size - given α, power, and effect size Compromise: Compute implied α & power - given β/α ratio, sample size Compromise: Compute implied α & power - given β/α ratio, sample size Post hoc: Compute required d = given α, power, and effect size Sensitivity: Compute required d = given α, power, and sample size Post hoc: Compute required d = given α, power, and sample size Power (1-β err prob) 0.05 Actual α ? Allocation ratio N2/N1 1		Test family Statistical test
A priori: Compute required sample size – given α, power, and effect size A priori: Compute implied α & power – given β/α ratio, sample size, and effect size Compromise: Compute required dre – given power, effect size, and sample size Post hoc: Compute required effect size – given α, power, and sample size Proportion p2 0.6 A err prob 0.05 Power (1-β err prob) 0.95 Allocation ratio N2/N1 1		Exact Proportions: Inequality, two independent groups (Fisher's exact test)
A priori: Compute required sample size – given α, power, and effect size Compromise: Compute implied α & power – given α, power, and effect size Criterion: Compute achieved power – given α, power, and sample size Post hoc: Compute achieved power – given α, power, and sample size Proportion p2 0.6 α err prob 0.05 Power (1-β err prob) 0.95 Actual α 7	r	
Compromise: Compute implied α & power - given β/α ratio, sample size Criterion: Compute required α - given α, power, effect size Post hot: Compute required effect size - given α, power, and sample size Proportion p2 0.6 α err prob 0.05 Power (1-β err prob) 0.95 Allocation ratio N2/N1 1		
α err prob 0.05 Actual power ? Power (1-β err prob) 0.95 Actual α ? Allocation ratio N2/N1 1 1		Compromise: Compute implied α & power – given β/α ratio, sample size, and effect size Criterion: Compute required α – given power, effect size, and sample size Post hoc: Compute achieved power – given α , sample size, and effect size
Power (1-β err prob) 0.95 Allocation ratio N2/N1 1	L L	Proportion p2 0.6 Total sample size ?
Allocation ratio N2/N1 1		α err prob 0.05 Actual power ?
Options X-Y plot for a range of values Calculate		Allocation ratio N2/N1 1
Options X-Y plot for a range of values Calculate		
		Options X-Y plot for a range of values Calculate

G*Power

Step 4: Choice of Parameters Tricky bit: need information on the size of the difference and the variability.

	Test family	Statistical test	:		
	Exact 🔻	Proportions:	nequality, two ind	ependent groups (Fisher's exact	test) 🔻
	Type of power ana	lysis			
	A priori: Compute	required sampl	e size – given α, p	ower, and effect size	•
	Input Parameters			Output Parameters	
		Tail(s)	Two 🔻	Sample size group 1	?
	Determine =>	Proportion p1	0.077	Sample size group 2	?
		Proportion p2	0	Total sample size	?
ור ו		α err prob	0.05	Actual power	?
	Power	(1-β err prob)	0.8	Actual α	?
	Allocatio	on ratio N2/N1	1		
		(Options	X-Y plot for a range of values	Calculate

G*Power

 To be able to pick up such a difference, we will need 2 samples of about 102 cows to reach significance (p<0.05) with 80% power.

🙀 G*Power 3.1.	9.2				
File Edit Viev	w Tests Calculat	or Help			
Central and no	ncentral distributio	ns Protocol of p	ower anal	yses	
	ortions: Inequalit Exact distribution A priori: Comput Tail(s) Proportion p1 Proportion p2 α err prob Power (1-β err p Allocation ratio N Sample size grou Sample size grou	y, two independ n e required samp rob) 12/N1 19 1 19 2	ent grou = Two = 0.0 = 0 = 0.0 = 0.8 = 1 = 102 = 102	ps (Fisher's exact tes) 77 5	
	Total sample size	2	= 204		
•		111			4
Test family Statistical test Exact Proportions: Inequality, two independent groups (Fisher's exact test) Type of power analysis					
A priori: Comp	oute required sampl	e size - given α,	power, an	d effect size	•
Input Paramete			Outpu	t Parameters	
input raiamete	Tail(s)	Two 🔻	Outpu	Sample size group 1	102
Determine =>	- · ·	0.077		Sample size group 2	102
	Proportion p2	0		Total sample size	204
	α err prob	0.05		Actual power	0.8060031
De	wer (1-β err prob)	0.8		Actual α	0.0000031
	ation ratio N2/N1	1		Actual o	•
	[Options	X-Y pl	ot for a range of values	Calculate

Sample Size: Power Analysis

Exercise 2:

• Pilot study: 10 arachnophobes were asked to perform 2 tasks:

<u>Task 1</u>: Group1 (n=5): to play with a big hairy tarantula spider with big fangs and an evil look in its eight eyes. <u>Task 2</u>: Group 2 (n=5): to look at pictures of the same hairy tarantula.

Anxiety scores were measured for each group (0 to 100).

- Use the data to calculate the values for a power calculation
- Run a power calculation (assume balanced design and parametric test)

Picture	Real Spider
25	45
35	40
45	55
40	55
50	65

Power Analysis

• To reach significance with a t-test, providing the preliminary results are to be trusted, and be confident about the difference between the 2 groups, we need about **20 arachnophobes** (2*10).

Power Analysis

Power Analysis

• For a range of sample sizes:

Sample Size: Power Analysis

Unequal sample sizes

- Scientists often deal with unequal sample sizes
 - No simple trade-off:
 - if one needs 2 groups of 30, going for 20 and 40 will be associated with decreased power.
 - Unbalanced design = bigger total sample
 - Solution:

<u>Step 1</u>: power calculation for equal sample size <u>Step 2</u>: adjustment

$$N = \frac{2n(1+k)^2}{4k}$$
$$n_1 = \frac{N}{(1+k)}$$
$$n_2 = \frac{kN}{(1+k)}$$

<u>Cow example</u>: balanced design: n = 102
but this time: unpainted group: 2 times bigger than painted one (k=2):
Using the formula, we get a total: N=2*102*(1+2)²/4*2 = 230

Painted butts (n₁)=77 Unpainted butts (n₂)=153

- <u>Balanced design</u>: **n = 2*102 = 204**
- <u>Unbalanced design</u>: **n= 77+153 = 230**

Sample Size: Power Analysis

Non-parametric tests

- Non-parametric tests: do not assume data come from a Gaussian distribution.
 - Non-parametric tests are based on ranking values from low to high
 - Non-parametric tests not always less powerful
- Proper power calculation for non-parametric tests:
 - Need to specify which kind of distribution we are dealing with
 - Not always easy
- Non-parametric tests never require more than 15% additional subjects providing that the distribution is not too unusual.
- Very crude rule of thumb for non-parametric tests:
 - Compute the sample size required for a parametric test and add 15%.

Sample Size: Power Analysis

- What happens if we ignore the power of a test?
 - Misinterpretation of the results
- p-values: never ever interpreted without context:
 - **Significant p-value (<0.05)**: exciting! Wait: what is the difference?
 - >= smallest meaningful difference: exciting
 - < smallest meaningful difference: not exciting
 - very big sample, too much power
 - Not significant p-value (>0.05): no effect! Wait: how big was the sample?
 - Big enough = enough power: no effect means no effect
 - Not big enough = not enough power
 - Possible meaningful difference but we miss it

Day 2 Scriptive statistics and data exploration

Anne Segonds-Pichon v2019-06

Quantitative data

- They take numerical values (units of measurement)
- Discrete: obtained by counting
 - Example: number of students in a class
 - values vary by finite specific steps
- or continuous: obtained by measuring
 - Example: height of students in a class
 - any values
- They can be described by a series of parameters:
 - Mean, variance, standard deviation, standard error and confidence interval

Measures of central tendency Mode and Median

• Mode: most commonly occurring value in a distribution

• Median: value exactly in the middle of an ordered set of numbers

Example 1: 18 27 34 52 54 59 6 68 78 82 85 87 91 93 100, Median = 68 Example 2: 18 27 27 34 52 52 59 61 68 68 85 85 85 90, Median = 60

Measures of central tendency Mean

- Definition: average of all values in a column
- It can be considered as a model because it summaries the data
 - Example: a group of 5 lecturers: number of friends of each members of the group: 1, 2, 3, 3 and 4
 - Mean: (1+2+3+3+4)/5 = 2.6 friends per person
 - Clearly an hypothetical value
- How can we know that it is an accurate model?
 - Difference between the real data and the model created

Measures of dispersion

• Calculate the magnitude of the differences between each data and the mean:

• Total error = sum of differences

 $= 0 = \Sigma(x_i - \overline{x}) = (-1.6) + (-0.6) + (0.4) + (1.4) = 0$

No errors !

• Positive and negative: they cancel each other out.

Sum of Squared errors (SS)

- To avoid the problem of the direction of the errors: we square them
 - Instead of sum of errors: sum of squared errors (SS):

 $(SS) = \Sigma(x_i - \overline{x})(x_i - \overline{x})$ = (1.6)² + (-0.6)² + (0.4)² + (0.4)² + (1.4)² = 2.56 + 0.36 + 0.16 + 0.16 + 1.96 = 5.20

- SS gives a good measure of the accuracy of the model
 - But: dependent upon the amount of data: the more data, the higher the SS.
 - <u>Solution</u>: to divide the SS by the number of observations (N)
 - As we are interested in measuring the error in the sample to estimate the one in the population we divide the SS by N-1 instead of N and we get the variance (S²) = SS/N-1

Variance and standard deviation

• variance
$$(s^2) = \frac{SS}{N-1} = \frac{\Sigma (x_i - \overline{x})^2}{N-1} = \frac{5.20}{4} = 1.3$$

- Problem with variance: measure in squared units
 - For more convenience, the square root of the variance is taken to obtain a measure in the same unit as the original measure:
 - the standard deviation
 - S.D. = $V(SS/N-1) = V(s^2) = s = \sqrt{1.3} = 1.14$
 - The standard deviation is a measure of how well the mean represents the data.

Standard deviation

Small S.D.: data close to the mean: mean is a good fit of the data

Large S.D.: data distant from the mean: mean is not an accurate representation

SD and SEM (SEM = SD/ \sqrt{N})

- What are they about?
 - The SD quantifies how much the values vary from one another: scatter or spread
 - The SD does not change predictably as you acquire more data.
 - The **SEM** quantifies how accurately you know the true mean of the population.
 - Why? Because it takes into account: **SD + sample size**
 - The SEM gets smaller as your sample gets larger
 - Why? Because the mean of a large sample is likely to be closer to the true mean than is the mean of a small sample.

SD and **SEM**

The SEM quantifies the distribution of the sample means.

SD or SEM ?

- If the scatter is caused by biological variability, it is important to show the variation.
 - Report the SD rather than the SEM.
 - Better even: show a graph of all data points.

- If you are using an in vitro system with no biological variability, the scatter is about experimental imprecision (no biological meaning).
 - Report the SEM to show how well you have determined the mean.

The SEM and the sample size

Histogram of random

random

The SEM and the sample size

Confidence interval

• Range of values that we can be 95% confident contains the true mean of the population.

- So limits of 95% CI: [Mean - 1.96 SEM; Mean + 1.96 SEM] (SEM = SD/VN)

Error bars	Туре	Description
Standard deviation	Descriptive	Typical or average difference between the data points and their mean.
Standard error	Inferential	A measure of how variable the mean will be, if you repeat the whole study many times.
Confidence interval usually 95% CI	Inferential	A range of values you can be 95% confident contains the true mean.

Z-score

• Standardisation of normal data with mean μ and standard deviation σ

 σ

 $Z = \frac{x - \mu}{2}$

• Example: μ =50 and σ =1.

• A variable with value x=60 has a z-score=1

Z-score
$$Z = \frac{x - \mu}{\sigma}$$

- Probability that a given value is found in a normally distributed sample with known μ and σ .
- Beyond a **threshold**, values 'do not belong' or are very unlikely to be found in such a sample.
 - Threshold = 1.96
 - Normal distribution: 95% of observations lie within $\mu \pm 1.96\sigma$ (Z=1.96)
 - Probability to find values beyond $\pm 1.96\sigma$ is =<5% (p<0.05)

Z-score application RNA-seq analysis

- Differential gene expression: Noise
 - Length of gene and level of expression
 - Lowly expressed genes = highest fold changes
 - Often biologically meaningless

Graphical exploration of data

Categorical data

Quantitative data: Scatterplot

Quantitative data: Scatterplot/stripchart

Quantitative data: Boxplot

Quantitative data: Boxplot <u>or</u> Beanplot

Scatterplot shows individual data

Data density mirrored by the shape of the polygon

Data Exploration Quantitative data: Boxplot and Beanplot and Scatterplot

Quantitative data: Histogram

Quantitative data: Histogram (distribution)

Poisson Distribution

Binomial Distribution

Plotting is not the same thing as exploring

<u>One experiment</u>: change in the variable of interest between CondA to CondB.
 Data plotted as a **bar chart**.

Plotting (and summarising) is (so) not the same thing as exploring

- <u>Five experiments</u>: change in the variable of interest between 3 treatments and a control.
 - Data plotted as a bar chart.

Plotting (and summarising and choosing the wrong graph) is (definitely) not the same thing as exploring

- <u>Four experiments</u>: Before-After treatment effect on a variable of interest.
- <u>Hypothesis</u>: Applying a treatment will decrease the levels of the variable of interest.
 - Data plotted as a bar chart.

Days 2 and 3 Analysis of Quantitative data

Anne Segonds-Pichon v2019-06

Outline of this section

- Assumptions for parametric data
- Comparing two means: **Student's** *t*-test
- Comparing more than 2 means
 - One factor: **One-way ANOVA**
 - Two factors: Two-way ANOVA
- Relationship between 2 continuous variables:
 - Linear: **Correlation**
 - Non-linear: Curve fitting
- Non-parametric tests

Introduction

- Key concepts to always keep in mind
 - Null hypothesis and error types
 - Statistics inference
 - Signal-to-noise ratio

The null hypothesis and the error types

- The null hypothesis (H₀): H₀ = no effect
 - e.g. no difference between 2 genotypes
- The aim of a statistical test is to reject or not H_{0.}

Statistical decision	True state of H _o	
	H ₀ True (no effect)	H _o False (effect)
Reject H _o	Type I error αFalse Positive	Correct True Positive
Do not reject H _o	Correct True Negative	Type II error βFalse Negative

- Traditionally, a test or a difference is said to be "significant" if the probability of type I error is: α =< 0.05
- High specificity = low False Positives = low Type I error
- High sensitivity = low False Negatives = low Type II error

Signal-to-noise ratio

• Stats are all about understanding and controlling variation.

- signal If the noise is low then the signal is detectable ...
- noise = statistical significance
- <u>signal</u> ... but if the noise (i.e. interindividual variation) is large
 then the same signal will not be detected
 = no statistical significance
- In a statistical test, the ratio of signal to noise determines the significance.

Analysis of Quantitative Data

- Choose the correct statistical test to answer your question:
 - They are 2 types of statistical tests:
 - **<u>Parametric tests</u>** with 4 assumptions to be met by the data,
 - <u>Non-parametric tests</u> with no or few assumptions (e.g. Mann-Whitney test) and/or for qualitative data (e.g. Fisher's exact and χ^2 tests).

Assumptions of Parametric Data

• All parametric tests have 4 basic assumptions that must be met for the test to be accurate.

1) Normally distributed data

• Normal shape, bell shape, Gaussian shape

• Transformations can be made to make death (mm) tarametric analysis.

Assumptions of Parametric Data

- Frequent departures from normality:
 - <u>Skewness</u>: lack of symmetry of a distribution

- <u>Kurtosis</u>: measure of the degree of 'peakedness' in the distribution
 - The two distributions below have the same variance approximately the same skew, but differ markedly in kurtosis.

More peaked distribution: kurtosis > 0

Flatter distribution: kurtosis < 0

(e) Platykurtic and leptokurtic

Assumptions of Parametric Data

2) <u>Homogeneity in variance</u>

• The variance should not change systematically throughout the data

3) Interval data (linearity)

• The distance between points of the scale should be equal at all parts along the scale.

4) Independence

- Data from different subjects are independent
 - Values corresponding to one subject do not influence the values corresponding to another subject.
 - Important in repeated measures experiments

Analysis of Quantitative Data

• Is there a difference between my groups regarding the variable I am measuring?

- e.g. are the mice in the group A heavier than those in group B?
 - Tests with 2 groups:
 - Parametric: Student's t-test
 - Non parametric: Mann-Whitney/Wilcoxon rank sum test
 - Tests with more than 2 groups:
 - Parametric: Analysis of variance (one-way and two-way ANOVA)
 - Non parametric: Kruskal Wallis

• Is there a relationship between my 2 (continuous) variables?

- e.g. is there a relationship between the daily intake in calories and an increase in body weight?
 - Test: Correlation (parametric or non-parametric) and Curve fitting

Comparison between 2 groups Parametric data

Comparison between 2 groups: Student's *t*-test

• Basic idea:

- When we are looking at the differences between scores for 2 groups, we have to judge the difference between their means relative to the spread or variability of their scores.
 - Eg: comparison of 2 groups: control and treatment

Student's t-test

Student's t-test

Student's t-test

- <u>3 types</u>:
 - Independent t-test
 - compares means for two independent groups of cases.
 - Paired t-test
 - looks at the difference between two variables for a single group:
 - the second 'sample' of values comes from the same subjects (mouse, petri dish ...).
 - One-Sample t-test
 - tests whether the mean of a single variable differs from a specified constant (often 0)

Example: coyotes.xlsx

- <u>Question</u>: do male and female coyotes differ in size?
- Sample size
- Data exploration
- Check the assumptions for parametric test
- Statistical analysis: Independent t-test

Exercise 3: Power analysis

• Example case:

No data from a pilot study but we have found some information in the literature.

In a study run in similar conditions as in the one we intend to run, <u>male coyotes</u> were found to measure: <u>92cm+/- 7cm (SD</u>).

We expect a <u>5% difference</u> between genders.

• smallest biologically meaningful difference

G*Power

Independent t-test

A priori Power analysis

Example case:

You don't have data from a pilot study but you have found some information in the literature.

In a study run in similar conditions to the one you intend to run, male coyotes were found to measure:

<u>92cm+/- 7cm (SD)</u>

You expect a <u>5% difference</u> between genders with a similar variability in the female sample.

You need a sample size of <u>n=76 (2*38)</u>

Power Analysis

	Central and noncentral distributions Protocol of power analyses				
[3] Tuesi	lay, March 26, 2019	16:30:24			
t tests – Means: Difference between two independent means (two groups)					
Analysis:	A priori: Compute re	equired sample siz	e		
Input:	Tail(s)		Two		
	Effect size d α err prob		0.6571429		
	Power (1-β err prob		0.80		
	Allocation ratio N2/	•		Clear	
Output:	Noncentrality param	neterδ =	2.8644195		
	Critical t		1.9925435		
	Df Sample size group 1		74 38	≡ Save	
	Sample size group 2		38		
	Total sample size		76	- Print	
A priori: Co					
Input Param			Output Parameters		
	eters Tail(s)		Output Parameters Noncentrality parameter δ	2.864419	
	Tail(s)			2.864419	
Input Param	Tail(s)	Two 💌	Noncentrality parameter δ		
Input Param	Tail(s) => Effect size d	Two • 0.6571429	Noncentrality parameter δ Critical t	1.992543	
Input Param	Tail(s) => Effect size d α err prob	Two 0.6571429 0.05	Noncentrality parameter δ Critical t Df	1.992543	
Input Param	Tail(s) => Effect size d α err prob Power (1-β err prob)	Two ▼ 0.6571429 0.05 0.80	Noncentrality parameter δ Critical t Df Sample size group 1	1.9925433 74 34	
Input Param	Tail(s) => Effect size d α err prob	Two 0.6571429 0.05	Noncentrality parameter δ Critical t Df		

Power Analysis

Power Analysis

For a range of sample sizes:

Data exploration \neq **plotting data**

Exercise 4: Data exploration

- The file contains individual body length of male and female coyotes. <u>Question</u>: do male and female coyotes differ in size?
 - Plot the data as stripchart, boxplot and violinplot

Exercise 4: Exploring data - Answers

Assumptions for parametric tests

1	Col. stats	A	В
		Females	Males
1			
1	Number of values	43	43
2			
3	Minimum	71.00	78.00
4	25% Percentile	86.00	87.00
5	Median	90.00	92.00
6	75% Percentile	93.50	96.00
7	Maximum	102.5	105.0
8			
9	Mean	89.71	92.06
10	Std. Deviation	6.550	6.696
11	Std. Error of Mean	0.9988	1.021
12			
13	Lower 95% Cl of mean	87.70	90.00
14	Upper 95% Cl of mean	91.73	94.12
15			
16	Sum	3858	3958
17			
18	D'Agostino & Pearson normality test		
19	К2	4.203	0.5080
20	P value	0.1223	0.7757
21	Passed normality test (alpha=0.05)?	Yes	Yes
22	P value summary	ns	ns
23			
24	Shapiro-Wilk normality test		
25	W	0.9700	0.9845
26	P value	0.3164	0.8190
27	Passed normality test (alpha=0.05)?	Yes	Yes
28	P value summary	ns	ns
00			

Normality 🗹

Independent *t*-test: results

	Unpaired t test	
1		
1	Table Analyzed	Coyote
2		
3	Column A	Females
4	vs.	VS.
5	Column B	Males
6		
7	Unpaired t test	
8	P value	0.1045
9	P value summary	ns
10	Significantly different (P < 0.05)?	No
11	One- or two-tailed P value?	Two-tailed
12	t, df	t=1.641, df=84
13		
14	How big is the difference?	
15	Mean of column A	89.71
16	Mean of column B	92.06
17	Difference between means (A - B) ± SEM	-2.344 ± 1.428
18	95% confidence interval	-5.185 to 0.4964
19	R squared (eta squared)	0.03107
20		
21	F test to compare variances	
22	F, DFn, Dfd	1.045, 42, 42
23	P value	0.8870
24	P value summary	ns
25	Significantly different (P < 0.05)?	No
26		
27	Data analyzed	
28	Sample size, column A	43
29	Sample size, column B	43
30		

Males tend to be longer than females but not significantly so (p=0.1045)

Homogeneity in variance \blacksquare

What about the power of the analysis?

Power analysis

But is a 2.3 cm difference between genders biologically relevant (<3%)?

Sample size: the bigger the better?

• It takes huge samples to detect tiny differences but tiny samples to detect huge differences.

- What if the tiny difference is meaningless?
 - Beware of **overpower**
 - Nothing wrong with the stats: it is all about interpretation of the results of the test.

- Remember the important first step of power analysis
 - What is the effect size of biological interest?

Coyotes

Exercise 5: Dependent or Paired *t*-test

working memory.xlsx

A group of rhesus monkeys (n=15) performs a task involving memory after having received a placebo. Their performance is graded on a scale from 0 to 100. They are then asked to perform the same task after having received a dopamine depleting agent.

Is there an effect of treatment on the monkeys' performance?

Another example of *t*-test:

working memory.xlsx

Ħ	Col. stats	A	в
≣	COL SIGIS	Placebo	DA depletion
		Y	Y
1	Number of values	15	15
2			
3	Minimum	9.000	7.000
ŀ	25% Percentile	18.00	12.00
5	Median	26.00	18.00
5	75% Percentile	37.00	25.00
1	Maximum	50.00	35.00
}			
)	Mean	27.27	18.87
0	Std. Deviation	12.65	8.911
1	Std. Error of Mean	3.265	2.301
2			
3	Lower 95% Cl of mean	20.26	13.93
4	Upper 95% Cl of mean	34.27	23.80
5			
6	D'Agostino & Pearson omnibus normality test		
7	K2	0.6754	0.9815
8	P value	0.7134	0.6122
9	Passed normality test (alpha=0.05)?	Yes	Yes
0	P value summary	ns	ns
1			
2	Sum	409.0	283.0

Normality 🗹

Another example of *t*-test:

working memory.xlsx

1	Paired t test		
-			
1	Table Analyzed	Working memory	
2			
3	Column A	Placebo	
4	vs.	VS.	
5	Column B	DA depletion	
6			
7	Paired t test		
8	P value	<0.0001)
9	P value summary	****	
10	Significantly different (P < 0.05)?	Yes	
11	One- or two-tailed P value?	Two-tailed	
12	t, df	t=8.616, df=14	
13	Number of pairs	15	
14			
15	How big is the difference?		
16	Mean of differences	8.400	
17	SD of differences	3.776	
18	SEM of differences	0.9749	
19	95% confidence interval	6.309 to 10.49	
20	R squared (partial eta squared)	0.8413	
21			
22	How effective was the pairing?		
23	Correlation coefficient (r)	0.9986	
24	P value (one tailed)	<0.0001	
25	P value summary	****	
26	Was the pairing significantly effective?	Yes	
27			

Paired t-test: Results working memory.xlsx

Comparison between 2 groups Non-Parametric data

Non-parametric test: Mann-Whitney = Wilcoxon rank test

- Non-parametric equivalent of the t-test.
- What if the data do not meet the assumptions for parametric tests?
 - The outcome is a rank or a score with limited amount of possible values: non-parametric approach.

- Group 1
 Group 2

 5
 8

 7
 9

 3
 6

 Mean
 3.5
- How does the Mann-Whitney test work?

- Statistic of the Mann-Whitney test: W (U)
 - W = sum of ranks mean rank: W_1 =3.5 and W_2 =10.5
 - Smallest of the 2 Ws: W₁ + sample size = **p-value**

Exercise 6: smelly teeshirt.xlsx

- Hypothesis: Group body odour is less disgusting when associated with an in-group member versus an outgroup member.
- Study: Two groups of Cambridge University students are presented with one of two smelly, worn t-shirts with university logos.
- **Question**: are Cambridge students more disgusted by worn smelly T-shirts from Oxford or Cambridge? Disgust score: 1 to 7, with 7 the most disgusting
 - Explore the data with an appropriate combination of 2 graphs
 - Answer the question with a non-parametric approach
 - What do you think about the design?

Exercise 6: smelly teeshirt.xlsx

• **Question**: are Cambridge students more disgusted by worn smelly T-shirts from Oxford or Cambridge? Disgust score: 1 to 7, with 7 the most disgusting

詛 Mann-Whitney test 1 Table Analyzed smelly teeshirt 2 3 Column B Oxford 4 vs. VS. 5 Column A Cambridge 6 7 Mann Whitney test 8 0.0037 P value 9 Exact or approximate P value? Exact 10 ** P value summary 11 Significantly different (P < 0.05)? Yes 12 One- or two-tailed P value? Two-tailed 13 Sum of ranks in column A.B 41,95 14 Mann-Whitney U 5 15

• A paired design would have been better.

Non-parametric test: Wilcoxon's signed-rank

- Non-parametric equivalent of the paired t-test
- How does the test work?

Before	Afte	er	Differences
	9	3	-6
	7	2	
	10	Z	-
	8		
	5	6	-
	8	2	
	7	-	
	, 9	4	L -5
	10	-	-
	10	-	-5

- Statistic of the Wilcoxon's signed-rank test: **T (W)**
 - Here: Wilcoxon's T = 4.5 (smallest of the 2 (absolute value))
 - N = 9 (we ignore the 0 difference): T + N \longrightarrow **p-value**

Exercise 7: botulinum.xlsx

	Before	After	
1	9	3	
2 3	7	4	
3	10	4	
4	8	5	
5	9	6	
6	8	2	
7	7	4	Contraction of the local division of the loc
8	9	4	- allowed
9	10	5	

A group of 9 disabled children with muscle spasticity (or extreme muscle tightness limiting movement) in their right upper limb underwent a course of injections with botulinum toxin to reduce spasticity levels. A second group of 9 children received the injections alongside a course of physiotherapy. A neurologist (blind to group membership) assessed levels of spasticity pre- and post-treatment for all 18 children using a 10-point ordinal scale.

Higher ratings indicated higher levels of spasticity.

- **Question**: do botulinum toxin injections reduce muscle spasticity levels?
 - Score: 1 to 10, with 10 the highest spasticity

Exercise 7: botulinum.xlsx

E	Before Af	ter	
1	9	3	
2	7	4	
3	10	4	Non-
4	8	5	
5	9	6	
6	8	2	Botulinum
7	7	4	Borox
8	9	4	10 BOTEX
9	10	5	

• **Question**: do botulinum toxin injections reduce muscle spasticity levels?

Answer: There was a significant difference pre- and post- treatment in ratings of muscle spasticity. (T=-45, p=0.004). *Note:* T=W

Comparison between more than 2 groups One factor

Comparison of more than 2 means

- Running multiple tests on the same data increases the **familywise error rate**.
- What is the familywise error rate?
 - The error rate across tests conducted on the same experimental data.
- One of the basic rules ('laws') of probability:
 - The Multiplicative Rule: The probability of the joint occurrence of 2 or more independent events is the product of the individual probabilities.

 $\mathsf{P}(\mathsf{A},\mathsf{B})=\mathsf{P}(\mathsf{A})\times\mathsf{P}(\mathsf{B})$

For example:

 $P(2 \text{ Heads}) = P(\text{head}) \times P(\text{head}) = 0.5 \times 0.5 = 0.25$

Familywise error rate

- **Example**: All pairwise comparisons between 3 groups A, B and C:
 - A-B, A-C and B-C
- Probability of making the Type I Error: **5%**
 - The probability of <u>not making the Type I Error</u> is 95% (=1 0.05)
- Multiplicative Rule:
 - Overall probability of <u>no Type I errors</u> is: 0.95 * 0.95 * 0.95 = 0.857
- So the probability of making <u>at least one Type I Error</u> is 1-0.857 = 0.143 or **14.3%**
 - The probability has increased from 5% to 14.3%
- Comparisons between 5 groups instead of 3, the familywise error rate is 40% (=1-(0.95)ⁿ)

Familywise error rate

- <u>Solution</u> to the increase of familywise error rate: correction for multiple comparisons
 - Post-hoc tests
- Many different ways to correct for multiple comparisons:
 - Different statisticians have designed corrections addressing different issues
 - e.g. unbalanced design, heterogeneity of variance, liberal vs conservative
- However, they all have **one thing in common**:
 - the more tests, the higher the familywise error rate: the more stringent the correction
- Tukey, Bonferroni, Sidak, Benjamini-Hochberg ...
 - Two ways to address the multiple testing problem
 - Familywise Error Rate (FWER) vs. False Discovery Rate (FDR)

Multiple testing problem

- **<u>FWER</u>**: **Bonferroni**: $\alpha_{adjust} = 0.05/n$ comparisons e.g. 3 comparisons: 0.05/3=0.016
 - Problem: very conservative leading to loss of power (lots of false negative)
 - 10 comparisons: threshold for significance: 0.05/10: 0.005
 - Pairwise comparisons across 20.000 genes $\ensuremath{\mathfrak{S}}$
- <u>FDR</u>: Benjamini-Hochberg: the procedure controls the expected proportion of "discoveries" (significant tests) that are false (false positive).
 - Less stringent control of Type I Error than FWER procedures which control the probability of <u>at least one</u> Type I Error
 - <u>More power at the cost of increased numbers of Type I Errors.</u>
- Difference between FWER and FDR:
 - a p-value of 0.05 implies that 5% of all tests will result in false positives.
 - a FDR adjusted p-value (or **q-value**) of 0.05 implies that 5% of significant tests will result in false positives.

Analysis of variance

• Extension of the 2 groups comparison of a *t*-test but with a slightly different logic:

- ANOVA compares variances:
 - If variance between the several means > variance within the groups (random error) then the means must be more spread out than it would have been by chance.

Analysis of variance

• The statistic for ANOVA is the F ratio.

• F =

Variance between the groups

• F = Variance within the groups (individual variability)

Variation explained by the model (= systematic)

Variation explained by unsystematic factors (= random variation)

- If the variance amongst sample means is greater than the error/random variance, then F>1
 - In an ANOVA, we test whether F is significantly higher than 1 or not.

Analysis of variance

Source of variation	Sum of Squares	df	Mean Square	F	p-value	
Between Groups	2.665	4	0.6663	8.423	<0.0001	
Within Groups	5.775	73 (0.0791			er Analysis:
Total	8.44	77				$I SD = \sqrt{MS(Residual)}$

- Variance (= SS / N-1) is the mean square
 - df: degree of freedom with df = N-1

Exercise 8: One-way ANOVA

protein expression.xlsx

 <u>Question</u>: is there a difference in protein expression between the 5 cell lines?

- 1 Plot the data
- 2 Check the assumptions for parametric test

Parametric tests assumptions

9	Col. stats	A	В	С	D	E
	COL STATS	Α	В	С	D	E
1	Number of values	12	12	18	18	18
2						
3	Minimum	0.3300	0.2600	0.2400	0.4900	0.3000
4	25% Percentile	0.4864	0.4225	0.4475	1.100	0.7625
5	Median	1.206	0.5550	0.7900	1.690	1.460
6	75% Percentile	1.465	0.6925	1.248	2.925	2.108
7	Maximum	2.088	0.8900	3.140	9.320	3.400
8						
9	Mean	1.088	0.5558	1.032	2.438	1.504
10	Std. Deviation	0.5469	0.1947	0.8364	2.108	0.8179
11	Std. Error of Mean	0.1579	0.05620	0.1971	0.4968	0.1928
12						
13	Lower 95% Cl of mean	0.7409	0.4321	0.6157	1.390	1.098
14	Upper 95% Cl of mean	1.436	0.6795	1.448	3.486	1.911
15						
16	Sum	13.06	6.670	18.57	43.88	27.08
17						
18	D'Agostino & Pearson normality test					
19	К2	0.1236	0.7508	9.375	22.59	1.280
20	P value	0.9401	0.6870	0.0092	<0.0001	0.5274
21	Passed normality test (alpha=0.05)?	Yes	Yes	No	No	Yes
22	P value summary	ns	ns	**	****	ns
23						

Parametric tests assumptions

1	C.L. L.L.	А	В	С	D	E
	Col. stats	А	В	С	D	E
1	Number of values	12	12	18	18	18
2						
3	Minimum	-0.4815	-0.5850	-0.6198	-0.3098	-0.5229
4	25% Percentile	-0.3303	-0.3742	-0.3497	0.04117	-0.1178
5	Median	0.08140	-0.2609	-0.1025	0.2278	0.1642
6	75% Percentile	0.1659	-0.1597	0.09514	0.4653	0.3237
7	Maximum	0.3196	-0.05061	0.4969	0.9694	0.5315
8						
9	Mean	-0.03123	-0.2817	-0.1064	0.2740	0.1018
10	Std. Deviation	0.2764	0.1632	0.3307	0.3112	0.2873
11	Std. Error of Mean	0.07978	0.04711	0.07796	0.07336	0.06772
12						
13	Lower 95% Cl of mean	-0.2068	-0.3854	-0.2709	0.1193	-0.04104
14	Upper 95% Cl of mean	0.1444	-0.1780	0.05803	0.4288	0.2447
15						
16	Sum	-0.3747	-3.380	-1.916	4.933	1.833
17						
18	D'Agostino & Pearson normality test					
19	К2	2.037	0.6827	0.5884	0.8869	2.902
20	P value	0.3611	0.7108	0.7451	0.6418	0.2344
21	Passed normality test (alpha=0.05)?	Yes	Yes	Yes	Yes	Yes
22	P value summary	ns	ns	ns	ns	ns
23						

Analysis of variance: Post hoc tests

- The ANOVA is an "omnibus" test: it tells you that there is (or not) a difference between your means but not exactly which means are significantly different from which other ones.
 - To find out, you need to apply **post hoc** tests.
 - These post hoc tests should only be used when the ANOVA finds a significant effect.

One-Way Analysis of variance

	Parameters: One-Way ANOVA (and Nonparametric	c or Mixed)	Parameters: One-Way ANOVA (and Nonparametric or Mixed)
	Experimental Design Repeated Measures Multiple	- Comparisons Options Residuals	Experimental Design Repeated Measures Multiple Comparisons Options Residuals
Analyze Data	Experimental design		Multiple comparisons test
Analyze Data	No matching or pairing		 Correct for multiple comparisons using statistical hypothesis testing. Recommended.
Built-in analysis	Each row represents matched, or repeated me	easures, data	Test: Tukey (recommended)
		Group C Group D	Correct for multiple comparisons by controlling the False Discovery Rate.
Which analysis? Analyze which o	Data Set-A Data Set-B Da	ata Set-C Title	Test: Two-stage step-up method of Benjamini, Krieger and Yekutieli (recommend 💌
□ Transform, Normalize			Don't correct for multiple comparisons. Each comparison stands alone.
Transform	2		Test: Fisher's LSD test
Transform concentrations (X)		- the the second	Multiple comparisons options
Normalize	Assume Gaussian distribution of residuals?		Swap direction of comparisons (A-B) vs. (B-A).
Prune rows	Yes. Use ANOVA.	(Report multiplicity adjusted P value for each comparison.
Remove baseline and column math	No. Use nonparametric test.	Parameters: One-Way ANOVA (and Nonparametric or Mixed)	Each P value is adjusted to account for multiple comparisons.
Transpose X and Y	Assume equal SDs?	Experimental Design Repeated Measures Multiple Comparisons Options Resi	Family-wise significance and confidence level: 0.05 (95% confidence interval)
Fraction of total	Yes. Use ordinary ANOVA test.	Eollowup tests	Graphing
	No. Use Brown-Forsythe and Welch ANOVA te	None,	Graph confidence intervals.
Column analyses	1	Compare the mean of each column with the mean of every other column.	Graph ranks (nonparametric).
t tests (and nonparametric tests)		Compare the mean of each column with the mean of a control column.	Graph differences (repeated measures).
One-way ANOVA (and nonparametric or	1	Control column: Column A : A	Additional results
One sample t and Wilcoxon test Descriptive statistics	1	Compare the means of preselected pairs of columns.	Descriptive statistics for each data set.
Normality and Lognormality Tests		Selected pairs: Select	Report comparison of models using AICc.
Frequency distribution	Based on your choices (on all tabs), Prism will perf - Ordinary one-way ANOVA.	Test for linear trend between column mean and left-to-right column order.	Report goodness of fit.
ROC Curve		Which test?	Output
Bland-Altman method comparison		Use choices on the Options tab to choose the test, and to set the defaults for	Show this many significant digits (for everything except P values):
Identify outliers		future ANOVAs.	
Analyze a stack of P values	Learn		P value style: GP: 0.1234 (ns), 0.0332 (*), 0.0021 (**), 0.1 ▼ N = 6
Grouped analyses			Make options on this tab be the default for future One-Way ANOVAs.
III → III			
			Learn Cancel OK
Select All	Deselect All		
		1	
Help	Cancel OK		
L			
		Learn Cancel	OK

1	Ordinary one-way ANOVA ANOVA results					
1	1					
1	Table Analyzed	Transform of Protein expression				
2	Data sets analyzed	A-E				
3						
4	ANOVA summary					
5	F	8.127				
6	P value	<0.0001				
7	P value summary	****				
8	Significant diff. among means (P < 0.05)?	Yes				
9	R square	0.3081 Hot	mndei	neitw	of variar	nce R
10		110	moge	licity	oi vailai	
11	Brown-Forsythe test					
12	F (DFn, DFd)	0.9831 (4, 73)				
13	P value	0.4222				
14	P value summary	115				
15	Are SDs significantly different (P < 0.05)?	No				
16						
17	Bartlett's test					
18	Bartlett's statistic (corrected)	5.829				
19	P value	0.2123				
20	P value summary	ns				
21	Are SDs significantly different (P < 0.05)?	No	F=0.67	27/0.	08278=8.3	13 —
22						_
23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
24	Treatment (between columns)	2.691	4	0.6727	F (4, 73) = 8.127	P<0.000
			73	0.08278		
25	Residual (within columns)	6.043	15	0.00210		
25 26	Residual (within columns) Total	6.043 8.734	77	0.00270		
				0.00210		
26 27						
26	Total					

Analysis of variance: results

2

Ħ	Ordinary one-way ANOVA Multiple comparisons								-
1	Number of families	1							T
2	Number of comparisons per family	10							
3	Alpha	0.05							
4						\frown			
5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value			
6	A vs. B	0.2505	-0.07808 to 0.5790	No	ns	0.2177	A-B		
7	A vs. C	0.07521	-0.2247 to 0.3751	No	ns	0.9555	A-C		
8	A vs. D	-0.3053	-0.6052 to -0.005359	Yes	*	0.0440	A-D		
9	A vs. E	-0.1331	-0.4330 to 0.1669	No	ns	0.7275	A-E		
10	B vs. C	-0.1753	-0.4752 to 0.1247	No	ns	0.4807	B-C		
11	B vs. D	-0.5557	-0.8557 to -0.2558	Yes	****	<0.0001	B-D		
12	B vs. E	-0.3835	-0.6834 to -0.08360	Yes	**	0.0055	B-E		
13	C vs. D	-0.3805	-0.6487 to -0.1122	Yes	**	0.0015	C-D		
14	C vs. E	-0.2083	-0.4765 to 0.05998	No	ns	0.2021	C-E		
15	D vs. E	0.1722	-0.09604 to 0.4405	No	ns	0.3839	D-E		
16									
17	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	q	0
18	A vs. B	-0.03123	-0.2817	0.2505	0.1175	12	12	3.016	7
19	A vs. C	-0.03123	-0.1064	0.07521	0.1072	12	18	0.9920	7
20	A vs. D	-0.03123	0.2740	-0.3053	0.1072	12	18	4.026	7
21	A vs. E	-0.03123	0.1018	-0.1331	0.1072	12	18	1.755	7
22	B vs. C	-0.2817	-0.1064	-0.1753	0.1072	12	18	2.311	7
23	B vs. D	-0.2817	0.2740	-0.5557	0.1072	12	18	7.330	7
24	B vs. E	-0.2817	0.1018	-0.3835	0.1072	12	18	5.058	7
25	C vs. D	-0.1064	0.2740	-0.3805	0.09590	18	18	5.611	7
26	C vs. E	-0.1064	0.1018	-0.2083	0.09590	18	18	3.071	7
27	D vs. E	0.2740	0.1018	0.1722	0.09590	18	18	2.540	7

Exercise 9: neutrophils.xlsx

- A researcher is looking at the difference between 4 cell groups. He has run the experiment 5 times. Within each experiment, he has neutrophils from a WT (control), a KO, a KO+Treatment 1 and a KO+Treatment2.
- **Question**: Is there a difference between KO with/without treatment and WT?

Exercise 9: neutrophils.xlsx

	ANUTA	J													
1	Table Analyzed	Repeated measures one-	way ANOVA data2												
2															
3	Repeated measures ANOVA summary														
4	Assume sphericity?	No													
5	F	28.57													
6	P value	0.0002													
7	P value summary		Dura a tilla anu ti	Cala anna			Mana Diff	0594 01 - 6		Circlifferent D	0	Additional and	Divelue	4.0	
8	Statistically significant (P < 0.05)?	Yes	Dunnett's mult	tiple compa	arisons tesi	[Mean Diff.	95% Cl of	ditt.	Significant?	Summary	Adjusted	P value	A-?	
9	Geisser-Greenhouse's epsilon	0.6916										\square		1	
	R square	0.8772	WT vs. KO	WT vo. KO		-21.8		-30.91 to -	12.60	Yes	**	0.0022	\	в	ко
11				WTVS. KU				<u> </u>					\	P	
12	Was the matching effective?		WT vs. KO+	T1			10.80	-19.02 to 4	10.62	No	ns	0.4941		C	KO+T1
13	F	8.239	WT vs. KO+	T2			-50.40	-78.53 to -	22.27	Yes	**	0.0067	/	D	KO+T2
14	P value	0.0020												-	
15	P value summary	**	1				•	'I			•				
16	Is there significant matching (P < 0.05)?	Yes													
	R square	0.2522													
18															
19	ANOVA table	SS		DF	MS	F (DFn, I	DFd)	P value							
20	Treatment (between columns)	10948		3	3649	F (2.075	, 8.299) = 28.57	P = 0.0002							
21	Individual (between rows)	4209		4	1052	F (4, 12)	= 8.239	P = 0.0020							
22	Residual (random)	1533		12	127.7										
23	Total	16689		19											
24		ĺ		ĺ	1 1			ĺ							

Answer: There is a significant difference from WT for the first and third groups.

Comparison between more than 2 groups One factor What about power analysis?

Comparison of more than 2 means

- Different ways to go about power analysis in the context of ANOVA:
 - $-\eta^2$: explained proportion variance of the total variance.
 - Can be translated into effect size d.
 - Not very useful: only looking at the omnibus part of the test
 - Minimum power specification: looks at the difference between the smallest and the biggest means.
 - All means other than the 2 extreme one are equal to the grand mean.
 - Smallest meaningful difference
 - Works like a post-hoc test.

Power Analysis Comparing more than 2 means

- <u>Research example</u>: Comparison between 4 teaching methods
- Smallest meaningful difference
 - Same assumptions:
 - Equal group sizes and equal variability (SD = 80)
 - 3 comparisons of interest: vs. Group 1
 - Smallest meaningful difference: group 1 vs. Group 2
 - t-test: Mean 1 = 550, SD = 80 and mean 2 = 598, SD = 80
 - Power calculation like for a t-test but with a Bonferroni correction (adjustment for multiple comparisons)

Power Analysis Comparing more than 2 means

- Smallest meaningful difference
 - Power calculation like for a t-test but with a Bonferroni correction.
 - Protein expression example:
 - Comparisons vs. cell line A.
 - Meaningful difference: D vs. A

Comparison between more than 2 groups One factor Non-Parametric data

Non Parametric approach: Kruskal-Wallis

- Non-parametric equivalent of the one-way ANOVA
- It is a test based on ranks
- **kruskal.wallis()** produces omnibus part of the analysis
- Post-hoc test associated with Kruskal-Wallis: **Dunn test**
- dunn.test() gives both Kruskall-Wallis and pairwise comparisons results ## dunn.test package ##
- Statistic associated with Kruskal-Wallis is H and it has a Chi² distribution
- The Dunn test works pretty much like the Mann-Whitney test.

Exercise 10: creatine.xlsx

- Creatine, a supplement popular among body builders
- Three groups: No creatine; Once a day; and Twice a day.
- <u>Question</u>: does the average weight gain depend on the creatine group to which people were assigned?

Creatine

Exercise 10: creatine.xlsx

1	Kruskal-Wallis test ANOVA results	
1	Table Analyzed	Creatine
2		
3	Kruskal-Wallis test	
4	P value	0.1458
5	Exact or approximate P value?	Exact
6	P value summary	ns
7	Do the medians vary signif. (P < 0.05)?	No
8	Number of groups	3
9	Kruskal-Wallis statistic	3.868
10		
11	Data summary	
12	Number of treatments (columns)	3
13	Number of values (total)	15
14		
15		

Comparison between more than 2 groups Two factors

Two-way Analysis of Variance (Factorial ANOVA)

Source of variation	Sum of	Df	Mean Square	F	p-value
	Squares				
Variable A (Between Groups)	2.665	4	0.6663	8.42	<0.0001
Within Groups (Residual)	5.775	73	0.0791		
Total	8.44	77			

Source of variation	Sum of Squares	Df	Mean Square	F	p-value
Variable A * Variable B	1978	2	989.1	F (2, 42) = 11.91	P < 0.0001
Variable B (Between groups)	3332	2	1666	F (2, 42) = 20.07	P < 0.0001
Variable A (Between groups)	168.8	1	168.8	F (1, 42) = 2.032	P = 0.1614
Residuals	3488	42	83.04		

Alcohol	N	one	21	Pints	4 Pints		
Gender	Female	Male	Female	Male	Female	Male	
	65	50	70	55	45	30	
	70	55	65	65	60	30	
	60	80	60	70	85	30	
	60	65	70	55	65	55	
	60	70	65	55	70	35	
	55	75	60	60	70	20	
	60	75	60	50	80	45	
	55	65	50	50	60	40	

Example: goggles.xlsx

- The 'beer-goggle' effect
 - The term refers to finding people more attractive after you've had a few beers. Drinking beer provides a warm, friendly sensation, lowers your inhibitions, and helps you relax.
- <u>Study</u>: effects of alcohol on mate selection in night-clubs.
- Pool of independent judges scored the levels of attractiveness of the person that the participant was chatting up at the end of the evening.
- **Question**: is subjective perception of physical attractiveness affected by alcohol consumption?
 - Attractiveness on a scale from 0 to 100

Interaction between Alcohol and Gende

2 Pints

None

4 Pints

- Interaction plots: Examples
 - Fake dataset:
 - <u>2 factors</u>: **Genotype** (2 levels) and **Condition** (2 levels)

Genotype	Condition	Value
Genotype 1	Condition 1	74.8
Genotype 1	Condition 1	65
Genotype 1	Condition 1	74.8
Genotype 1	Condition 2	75.2
Genotype 1	Condition 2	75
Genotype 1	Condition 2	75.2
Genotype 2	Condition 1	87.8
Genotype 2	Condition 1	65
Genotype 2	Condition 1	74.8
Genotype 2	Condition 2	88.2
Genotype 2	Condition 2	75
Genotype 2	Condition 2	75.2

- Interaction plots: Examples
 - <u>2 factors</u>: **Genotype** (2 levels) and **Condition** (2 levels)

Single Effect

- Interaction plots: Examples
 - <u>2 factors</u>: **Genotype** (2 levels) and **Condition** (2 levels)

Zero or Both Effect

- Interaction plots: Examples
 - <u>2 factors</u>: **Genotype** (2 levels) and **Condition** (2 levels)

Interaction

ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Interaction	1978	2	989.1	F (2, 42) = 11.91	< 0.0001
Alcohol Consumption	3332	2	1666	F (2, 42) = 20.07	< 0.0001
Gender	168.8	1	168.8	F (1, 42) = 2.032	0.1614
Residual	3488	42	83.04		

<u>With significant interaction</u> (real data)

ANOVA table	SS	DF MS	F (DFn, DFd)	P value
Interaction	7.292	2 3.646	F (2, 42) = 0.06872	0.9337
Alcohol Consumption	5026	2 2513	F (2, 42) = 47.37	< 0.0001
Gender	438.0	1 438.0	F (1, 42) = 8.257	0.0063
Residual	2228	42 53.05		

Analyze Data				×										
Built-in analysis	Parameters: Two-Way ANOVA	(or Mixed Model)				×								
Which analysis?	RM Design RM Analysis Fac								1					
Transform, Normalize Transform Transform concentrations (X) Normalize	Table format: Grouped A:Y		lysis Factor na	mes Mult	tiple Compari			×						
Prune rows	2 Title	Table format:	Group	A	Group	в	Group C	3						
Remove baseline and column math		Grouped	Title		Title		Title	3						ı
	3 Title		A:Y1 /	A:Y2	B:Y1	B:Y2 C:	(1 C:Y2	1			Parameters: Two-W	ay ANOVA (or Mixed Mode	el)	×
Transpose X and Y	4 Title	1 Title						3			DM Davies DM As	alunia Frankas anna Malkia	ole Comparisons Options Re	a di di sa la
Fraction of total	Matching by which facto	2 Title											ble Comparisons Options Re	siduais
XY analyses	Each column represents	3 Title				Parameters	Two-Way AN	OVA (or Mi	ixed Model)		Multiple compar		istical hypothesis testing. Reco	mmended
E Column analyses	Each row represents a	4 Title	hand	ml	James .				a la la como		Tesh Cid-L ((more power, recommended)	isacai <u>ny</u> poniesis tesang. Need	×
Grouped analyses	· ·	Factor names				_			nes Multiple Comparisons (Options Residua			ling the Ealse Discovery Rate.	
Two-way ANOVA (or mixed model)	Assume sphericity (equa				Condor		d of comparis						amini, Krieger and Yekutieli (rec	ommended) 🗸
Three-way ANOVA (or mixed model)	No. Use the <u>G</u> eisser-Gr		-	Options Residuals r Mixed Model) Image: Multiple Comparis names Multiple Comparis Ip A Group Image: A:Y2 B:Y1 Image: A:Y2 B:Y1		Compa	re each cell mea	n with the o	other cell mean in that row	~		for multiple comparisons. Each		
Row means with SD or SEM	O Yes. No correction.	Name the factor th	at defines the <u>r</u> o	ows:	Alcohol			Group A	Group	B	Te <u>s</u> t: Fisher's			
Multiple t tests - one per row		Name of matched s	set (i.e. person d	or block):	Subject			ata Set-A			Multiple compar	isons options		
Contingency table analyses							A:Y1	A	.:Y2 B:Y1	B:Y2	Swap direction	n of comparisons (A-B) vs. (B-	-A).	
Survival analyses							1	(Mean)+	Mean		Report multip	licity <u>a</u> djusted P value for each	h comparison.	
Parts of whole analyses												is adjusted to account for mu		
	Based on your choices (on						2	(Mean)+	Mean	צ ע			0.05 (95% confidence inte	rval) 🗸
Multiple variable analyses	- Ordinary two-way ANC						3	Mean +	→ Mean		Graphing option			
Nested analyses											Graph confide			
Generate curve											Additional result			
🗄 Simulate data							ny comparisor				Narrative res			
									h every other column mean.			/column/grand <u>m</u> eans.		
									h the control column mean.		Report goodn	ness of fit.		
						Co	ntrol column: G	oup A : Fen	nale	\sim	Output	significant digits (for everythir	ng except P values): 4	•
L				_		-								
	Help				Learn						P <u>v</u> alue style: G	P: 0.1234 (ns), 0.0332 (*), 0.	.0021 (**), 0.0 ∨ <u>N</u> = 6	•
						Which te	st?				Make options or	n this tab be the default for fu	uture Two-Way ANOVAs.	
							ices on the Opti NOVAs.	ons tab to c	hoose the test, and to set th	e defaults for			Learn Cancel	ОК
										Connel	01			
									Learn	Cancel	OK			

	2way ANOVA ANOVA results					
1	Table Analyzed	data for 2-way				
2						
3	Two-way ANOVA	Ordinary				
4	Alpha	0.05				
5						
6	Source of Variation	% of total variation	P value	P value summary	Significant?	
7	Interaction	22.06	<0.0001	****	Yes	
8	Alcohol Consumption	37.16	<0.0001	****	Yes	
9	Gender	1.882	0.1614	ns	No	
10						
11	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
12	Interaction	1978	2	989.1	F (2, 42) = 11.91	P<0.0001
13	Alcohol Consumption	3332	2	1666	F (2, 42) = 20.07	P<0.0001
14	Gender	168.8	1	168.8	F (1, 42) = 2.032	P=0.1614
15	Residual	3488	42	83.04		
16						

	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value
	None:Female vs. None:Male	-6.250	-19.85 to 7.351	No	ns	0.7432
)	None:Female vs. 2 Pints:Female	-1.875	-15.48 to 11.73	No	ns	0.9984
I	None:Female vs. 2 Pints:Male	-6.250	-19.85 to 7.351	No	ns	0.7432
2	None:Female vs. 4 Pints:Female	3.125	-10.48 to 16.73	No	ns	0.9826
3	None:Female vs. 4 Pints:Male	25.00	11.40 to 38.60	Yes	****	<0.0001
Ļ	None:Male vs. 2 Pints:Female	4.375	-9.226 to 17.98	No	ns	0.9278
j	None:Male vs. 2 Pints:Male	0.000	-13.60 to 13.60	No	ns	>0.9999
5	None:Male vs. 4 Pints:Female	9.375	-4.226 to 22.98	No	ns	0.3287
1	None:Male vs. 4 Pints:Male	31.25	17.65 to 44.85	Yes	****	<0.0001
3	2 Pints:Female vs. 2 Pints:Male	-4.375	-17.98 to 9.226	No	ns	0.9278
)	2 Pints:Female vs. 4 Pints:Female	5.000	-8.601 to 18.60	No	ns	0.8796
)	2 Pints:Female vs. 4 Pints:Male	26.88	13.27 to 40.48	Yes	****	<0.0001
I	2 Pints:Male vs. 4 Pints:Female	9.375	-4.226 to 22.98	No	ns	0.3287
2	2 Pints:Male vs. 4 Pints:Male	31.25	17.65 to 44.85	Yes	****	<0.0001
3	4 Pints:Female vs. 4 Pints:Male	21.88	8.274 to 35.48	Yes	***	0.0003
Ē						

Association between 2 continuous variables Linear relationship

- A correlation coefficient is an index number that measures:
 - The <u>magnitude</u> and the <u>direction</u> of the relation between 2 variables
 - It is designed to range in value between -1 and +1

- Assumptions for correlation
 - Regression and linear Model (Im)

- Linearity: The relationship between X and the mean of Y is linear.
- Homoscedasticity: The variance of residual is the same for any value of X.
- Independence: Observations are independent of each other.
- **Normality:** For any fixed value of X, Y is normally distributed.

- Assumptions for correlation
 - Regression and linear Model (Im)
- **Outliers**: the observed value for the point is very different from that predicted by the regression model.
- Leverage points: A leverage point is defined as an observation that has a value of x that is far away from the mean of x.
- Influential observations: change the slope of the line. Thus, have a large influence on the fit of the model.
- One method to find influential points is to compare the fit of the model with and without each observation.
- Bottom line: **influential outliers** are problematic.

- Most widely-used correlation coefficient:
 - Pearson product-moment correlation coefficient "r"

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

- The 2 variables do not have to be measured in the same units but they have to be proportional (meaning linearly related)
- Coefficient of determination:
 - r is the correlation between X and Y
 - r² is the coefficient of determination:
 - It gives you the proportion of variance in Y that can be explained by X, in percentage.

Correlation Example: roe deer.xlsx

• Is there a relationship between parasite burden and body mass in roe deer?

Linear reg. Tabular results

Correlation Example: roe deer.xlsx

There is a negative correlation between parasite load and fitness but this relationship is only significant for the males(p=0.0049 vs. females: p=0.2940).

1	Correlation		PL vs. Male	PL vs. Female
			-	
1	Pearson r			
2	r		-0.7504	-0.3020
3	95% confidence interval	(-0.9256 to -0.3099	-0.7176 to 0.2722
4	R squared		0.5630	0.09119
5				
6	P value			
7	P (two-tailed)		0.0049	0.2940
8	P value summary		**	ns
9	Significant? (alpha = 0.05)		Yes	No
10				
11	Number of XY Pairs		12	14

1	Best-fit values		
2	Slope	-4.621	-1.888
3	Y-intercept	30.20	25.04
4	X-intercept	6.536	13.26
5	1/slope	-0.2164	-0.5297
6			
7	Std. Error		
8	Slope	1.287	1.721
9	Y-intercept	3.025	3.453
10			
11	95% Confidence Intervals		
12	Slope	-7.490 to -1.753	-5.637 to 1.861
13	Y-intercept	23.46 to 36.94	17.51 to 32.56
14	X-intercept	4.902 to 13.47	5.738 to +in finity
15			
16	Goodness of Fit		
17	R square	0.5630	0.09119
18	Sy.x	1.980	2.512
19			
20	Is slope significantly non-zero?		
21	F	12.89	1.204
22	DFn, DFd	1,10	1, 12
23	P value	0.0049	0.2940
24	Deviation from zero?	Significant	Not Significant
25			
26	Equation	Y = -4.621*X + 30.20	Y = -1.888*X + 25.04
27			
28	Data		
29	Number of X values	12	26
30	Maximum number of Y replicates	1	1
31	Total number of values	12	14
32	Number of missing values	0	12
2.2			

Male

Female

Association between 2 continuous variables Linear relationship Diagnostic

• **Question**: Is there a relationship between time spent revising and exam anxiety? And, if yes, are boys and girls different?

• **Focus**: how good is the model?

• **Question**: Is there a relationship between time spent revising and exam anxiety? And, if yes, are boys and girls different?

• **Focus**: how good is the model?

						internation of the order			
						D'Agostino & Pears	son omnibus K2 14.43	68.42	
	Nonlin fit	^				P value	0.0007	(<0.0001)	
===	Table of results	Anxiety F	Anxiety M	Global (shared)		Passed normality	(test (alpha=0.05)? No	No	-
		Y	Y	Y				****	
1	Comparison of Fits					P value summary	***		
2	Null hypothesis			Slope same for all data sets	_		1	. '	
3	Alternative hypothesis			Slope different for each data set	_	Number of points			
4	P value		(0.0299	_	# of X values	51	103	
5	Conclusion (alpha = 0.05)			Reject null hypothesis	_	# Y values anal	lyzed 51	52	
6	Preferred model			Slope different for each data set	_	Outliers (not ex	cluded, Q=1%) 2		
7	F (DFn, DFd)			4.852 (1, 99)	_				
8					— L				
9	Slope different for each data set								
10	Best-fit values							Exam anxiety	
11	YIntercept	91.94	84.19	Correlation	Revise vs.	Revise vs.	100 J	Exam divicty	
12	Slope	-0.8238	-0.5353		Anxiety F	Anxiety M		•	
13	Std. Error				Y	Y		•	+
14	YIntercept	2.279	2.621	Pearson r			80	•	+
5	Slope	0.08173	0.1016		8214	-0.5974		· · ·	:
6	95% CI (profile likelihood)				8945 to -0.7055	-0.7483 to -0.3877	60 -	•	
7	YIntercept	87.36 to 96.52	78.93 to 89.46		746	0.3568	Anxiety		
8	Slope	-0.988 to -0.6596	-0.7394 to -0.3312					. \ \	
19	Goodness of Fit			P value	~		40 -	· · ·	
20	Degrees of Freedom	49	50	P (two-tailed)	.0001	<0.0001		•	
21	R square	0.6746	0.3568	P value summary		R 1994	20 -	•	
22	Absolute Sum of Squares	5322	8845	Significant? (alpha = 0.05) Ye	s	Yes	•		

Revise

• **Question**: Is there a relationship between time spent revising and exam anxiety? And, if yes, are boys and girls different?

• **Focus**: how good is the model? **Diagnostic**: we don't like students 24, 87 and 78

Residuals: Nonlin fit of Exam anxiety

							(anareu)	
			Y		Y		Y	
	Comparison of Fits							
	Null hypothesis					Slope same for all d	ata sets	
	Alternative hypothesi	s				Slope different for ea	ch data set	
	P value					0.0056		
	Conclusion (alpha =	0.05)				Reject null hypothes	is	
	Preferred model					Slope different for ea	ch data set	
	F (DFn, DFd)					8.022 (1, 97)		
	Slope different for each	data set						
	Best-fit values							
	YIntercept		92.25		86.97			
	Slope		-0.875		-0.6075			
	Std. Error							
	YIntercept		1.936		1.648			
	Slope		0.07033		0.06326			
	95% CI (profile likelihoo	od)						
	YIntercept		88.35 to 96.14		83.66 to 90.29			
	Slope		-1.016 to -0.7336		-0.7347 to -0.4804		Revise	Revise
	Goodness of Fit					Correlation	vs. Anxiety F	vs. Anxiety M
	Degrees of Freedom		18		49			
	R square	(0.7633	(0.653	4	Y	Y
	Absolute Sum of Squ	iares	3759		3306	Pearson r	-0.8737	-0.8081
	Sy.x		8.849		8.213	95% confidence interval	-0.9267 to -0.7866	-0.8863 to -0.6851
						R squared	0.7633	0.653
		10.010						
	Normality of Residuals					P value		
_		0.5450			~~	P (two-tailed)	< 0.0001	<0.0001
	D'Agostino & Pearson omnibus K2	0.5158		5.1	32	P value summary Significant? (alpha = 0.05		Yes
	P value (0.7727		0.0	768	Significant? (alpha = 0.05	1103	165
	Passed normality test (alpha=0.05)	? Yes		Yes	6	_		
	P value summary	ns		ns				
1								

Association between 2 continuous variables Linear relationship Non-parametric

Non-Parametric:

Spearman Correlation Coefficient

Only really useful for ranks (either one or both variables)
ρ (rho) is the equivalent of r and calculated in a similar way

• <u>Example</u>: dominance.xslx

- Six male colobus monkeys ranked for dominance
- Question: is social dominance associated with parasitism?
 - Eggs of *Trichirus* nematode per gram of monkey faeces

Monkey	Dominance	Eggs.per.gram
Erroll	1	5777
Milo	2	4225
Fraiser	3	2674
Fergus	4	1249
Kabul	5	749
Норе	6	870

Non-Parametric: Spearman Correlation Coefficient

• **Answer**: the relationship between dominance and parasitism is significant ($\rho = -0.94$, p = 0.017) with high ranking males harbouring a heavier burden.

Association between 2 continuous variables Non-linear relationship

Curve fitting

• Dose-response curves

- Nonlinear regression
- Dose-response experiments typically use around 5-10 doses of agonist, equally spaced on a logarithmic scale
- Y values are responses
- The aim is often to determine the IC50 or the EC50
 - IC50 (I=Inhibition): concentration of an agonist that provokes a response half way between the maximal (Top) response and the maximally inhibited (Bottom) response.
 - EC50 (E=Effective): concentration that gives half-maximal response

Inhibition: Y=Bottom + (Top-Bottom)/(1+10^((X-LogIC50)))

Step by step analysis and considerations:

1- Choose a **Model**:

not necessary to normalise

should choose it when values defining 0 and 100 are precise

variable slope better if plenty of data points (variable slope or 4 parameters)

2- Choose a **Method**: outliers, fitting method, weighting method and replicates

3- Compare different conditions:

No comparison

-100

Diff in parameters O For each data set, which of two equations (models) fits best?

log(Agonist], M

Diff between conditions for one or more parameters — Do the best-fit values of selected unshared parameters differ between data sets?

Constraint vs no constraint
For each data set, does the best-fit value of a parameter differ from a hypothetical value?

lo inhihito

Diff between conditions for one or more parameters — Does one curve adequately fit all the data sets?

4- Constrain:

depends on your experiment depends if your data don't define the top or the bottom of the curve

Step by step analysis and considerations:

5- Initial values:

defaults usually OK unless the fit looks funny

6- Range:

defaults usually OK unless you are not interested in the x-variable full range (ie time)

7- Output:

summary table presents same results in a ... summarized way.

8 – **Confidence**: calculate and plot confidence intervals

9- Diagnostics:

check for normality (weights) and outliers (but keep them in the analysis) check Replicates test residual plots

Normalized data 4 parameters 110 EC50 No inhibitor LogEC50 same for all data sets + Inhibitor LogEC50 different for each data set < 0.0001 Reject null hypothesis LogEC50 different for each data set -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 log (Agonist) 162.8 (1.52) -7.017 -5.943 LogEC50

95% Confidence Intervals		
LogEC50	-7.137 to -6.897	-6.057 to -5.830
HillSlope	0.6094 to 0.9184	0.6467 to 0.9460
EC50	7.295e-008 to 1.268e-007	8.763e-007 to 1.481e-006
R square	0.9580	0.9635

Non-normalized data 3 parameters

95% Confidence Intervals

Bottom

LogEC50

EC50

Тор

	_					
	No inhibitor	LogEC50 same for all data sets				
		LogEC50 different for each data set				
	In hibitor	< 0.0001	C50 different for each data set 001 ct null hypothesis C50 different for each data set			
	5 .40 .35 .30	Reject nul	l hypothesis			
4.5 -4.0 -3.5 -3.0 -		LogEC50 different for each data set				
	-6.017 101.0 (1,		50)			
	-	1				
	-30.74 to 24.78		-11.65 to 30.07			
	348.2 to 383.2		324.3 to 361.4			
	-7.312 to -7.006		-6.175 to -5.859			
	4.875e-008 to 9.85	3e-008	6.677e-007 to 1.385e-006			

	1			
	R square	0.9655		0.9648
1			,	

			Non- normalized data 4 parameters	No inhibitor	Inhibitor
	No inhibitor	Inhibitor			
Replicates test for lack of fit					
SD replicates	22.71	25.52	see EC50		
SD lack of fit	41.84	32.38	[∞] 150- 100- → Inhibitor		
Discrepancy (F)	3.393	1.610		-7.158	-6.011
P value	0.0247	0.1989	9.5 - 9.0 - 9.5 - 4.0 - 7.5 - 7.0 - 4.5 - 4.0 - 3.5 - 3.0	-7.150	-0.011
Evidence of inadequate model?	Yes	No	-se log(Agonist) -se logEC50 -7.158 -6.011		
			Non- normalized data 3 parameters		
			500 - 450 -		
Replicates test for lack of fit					
SD replicates	22.71	25.52	300		
SD lack of fit	39.22	30.61	250- 250-		
Discrepancy (F)	2.982	1.438	200- EC50		
P value	0.0334	0.2478	nse No inhibitor	\frown	\frown
Evidence of inadequate model?	Yes	No	se Inhibitor	(-7.159)	(-6.017)
			43 43 43 43 43 43 43 43 43 43 43 43 43 4		
			110		
Replicates test for lack of fit SD replicates	5.755	7.100			
SD replicates SD lack of fit	5.755	8.379			
Discrepancy (F)	3.656	1.393	EC50		
P value	0.0125	0.2618	v v v v v v v v v v v v v v v v v v v		
Evidence of inadequate model?	Yes	0.2018 No	39-		
	165	NU	land and a set of the	-7.017	-5.943
Replicates test for lack of fit					
SD replicates	5.755	7.100	⁷⁰		
SD lack of fit	12.28	9.649			
Discrepancy (F)	4.553	1.847	40- 30- • No inhibitor		
P value	0.0036	0.1246	20-	7.004	5.050
Evidence of inadequate model?	Yes	No		-7.031	-5.956
			Lag608 7.001 -5.96		

Day 3 Analysis of Qualitative data

Anne Segonds-Pichon v2019-06

- = not numerical
- = values taken = usually names (also nominal)
 - e.g. causes of death in hospital
- Values can be numbers but not numerical
 - e.g. group number = numerical label but not unit of measurement
- Qualitative variable with intrinsic order in their categories = *ordinal*
- Particular case: qualitative variable with 2 categories: *binary* or *dichotomous*
 - e.g. alive/dead or male/female

Fisher's exact and Chi²

Example: cats and dogs.xlsx

- Cats and dogs trained to line dance
- 2 different rewards: food or affection
- **Question**: Is there a difference between the rewards?
- Is there a significant relationship between the 2 variables?
 - does the reward significantly affect the likelihood of dancing?
- To answer this type of question:
 - Contingency table
 - Fisher's exact or Chi² tests

But first: how many cats do we need?

	Food	Affection
Dance	?	?
No dance	?	?

Exercise 11: Power calculation

- Preliminary results from a pilot study: **25%** line-danced after having received affection as a reward vs. **70%** after having received food.
 - How many cats do we need?

Exercise 11: Power calculation

G*Power 3.1.9.2	
e Edit View Tests Calculator	Help
Central and noncentral distributions	Protocol of power analyses

Output:

If the values from the pilot study are good predictors and if we use a sample of **n=23 for each group**, we will achieve a power of 83%.

Fil

Test family Statistical te	st	
Exact Proportions	s: Inequality, two inde	pendent groups (Fisher's exact test)
Type of power analysis		
A priori: Compute required sam	ple size – given α, po	ower, and effect size
Input Parameters	s) Two 🔻	Output Parameters Sample size group 1
· · ·		
Determine => Proportion p	1 0.25	Sample size group 2
Proportion p	2 0.7	Total sample size
α err pro	b 0.05	Actual power 0.828463
Power (1-β err prot	0.80	Actual α 0.024852
Allocation ratio N2/N	1 1	

Chi-square and Fisher's tests

- Chi² test very easy to calculate by hand but Fisher's very hard
- Many software will not perform a Fisher's test on tables > 2x2
- Fisher's test more accurate than Chi² test on small samples
- Chi² test more accurate than Fisher's test on large samples
- Chi² test assumptions:
 - 2x2 table: no expected count <5
 - Bigger tables: all expected > 1 and no more than 20% < 5
- Yates's continuity correction
 - All statistical tests work well when their assumptions are met
 - When not: probability Type 1 error increases
 - <u>Solution</u>: corrections that increase p-values
 - Corrections are dangerous: no magic
 - Probably best to avoid them

Chi-square test

• In a chi-square test, the observed frequencies for two or more groups are compared with expected frequencies by chance.

$$(Observed Frequency - Expected Frequency)^2$$

 $\chi^2 = \Sigma - Expected Frequency$

- With observed frequency = collected data
- Example with 'cats and dogs'

Chi-square test

				Type of	Training	
				Food as	Affection as	
Animal				Rew ard	Rew ard	Total
Cat	Did they	Yes	Count	26	6	32
	dance?		% within Did they dance?	81.3%	18.8%	100.0%
		No	Count	6	30	36
			% within Did they dance?	16.7%	83.3%	100.0%
	Total		Count	32	36	68
			% within Did they dance?	47.1%	52.9%	100.0%
Dog	Did they	Yes	Count	23	24	47
	dance?		% within Did they dance?	48.9%	51.1%	100.0%
		No	Count	9	10	19
			% within Did they dance?	47.4%	52.6%	100.0%
	Total		Count	32	34	66
			% within Did they dance?	48.5%	51.5%	100.0%

Did they dance? * Type of Training * Animal Crosstabulation

<u>Example</u>: expected frequency of cats line dancing after having received food as a reward:

Direct counts approach:

Expected frequency=(row total)*(column total)/grand total = 32*32/68 = **15.1**

Probability approach:

Probability of line dancing: 32/68	
Probability of receiving food: 32/6	58

Expected frequency: (32/68)*(32/68)=0.22: 22% of 68 = 15.1

For the cats:

 $Chi^2 = (26-15.1)^2/15.1 + (6-16.9)^2/16.9 + (6-16.9)^2/16.9 + (30-19.1)^2/19.1 = 28.4$

Is 28.4 big enough for the test to be significant?

			, ,			
				Type of	f Training	
				Food as	Affection as	
Animal				Rew ard	Rew ard	Total
Cat	Did they	Yes	Count	26	6	32
	dance?		Expected Count	(15.1)	1 6.9	32.0
		No	Count)6	30	36
			Expected Count	16.9	19.1	36.0
	Total		Count	32	36	68
			Expected Count	32.0	36.0	68.0
Dog	Did they	Yes	Count	23	24	47
	dance?		Expected Count	22.8	24.2	47.0
		No	Count	9	10	19
			Expected Count	9.2	9.8	19.0
	Total		Count	32	34	66
			Expected Count	32.0	34.0	66.0

Did they dance? * Type of Training * Animal Crosstabylation

Is 28.4 big enough for the test to be significant?

Student's t-test

 χ^2 test

Results

Ta	able Analyzed	Cat
P	value and statistical significance	
1	Test .	Chi-square
0	Chi-square, df	28.36, 1
Z	2	5.320
F	² value	<0.0001
F	^o value summary	***
0	One- or two-sided	Two-sided
5	Statistically significant (P < 0.05)?	Yes
		l í

1	Table Analyzed	Cat
2		
3	Fisher's exact test	
4		
5	P value	< 0.0001
6	P value summary	***
7	One- or two-sided	Two-sided
8	Statistically significant? (alpha<0.05)	Yes
0		i i

4	
Table Analyzed	Dog
P value and statistical significance	
Test	Chi-square
Chi-square, df	0.01331, 1
Z	0.1154
P value	0.9081
P value summary	ns
One- or two-sided	Two-sided
Statistically significant (P < 0.05)?	No
	1 1

_		
4		
	Table Analyzed	Dog
	P value and statistical significance	
	Test	Fisher's exact test
	P value	>0.9999
	P value summary	ns
	One- or two-sided	Two-sided
	Statistically significant (P < 0.05)?	No

Fisher's exact test: results

• In our example:

cats are more likely to line dance if they are given food as reward than affection (p<0.0001) whereas dogs don't mind (p>0.99).

	Infected	Uninfected
Rockhampton	12	8
Bowen	4	16
Mackay	15	5

• A researcher decided to check the hypothesis that the proportion of cane toads with intestinal parasites was the same in 3 different areas of Queensland.

From Statistics Explained by Steve McKillup

• Question: Is the proportion of cane toads infected by intestinal parasites the same in 3 different areas of Queensland?

1	Table Analyzed	Cane toad	
C	Chi-square		
	Chi-square, df	12.95, 2	
	P value	0.0015	
	P value summary	**	
	One- or two-tailed	NA	
	Statistically significant? (alpha<0.05)	Yes	
0	Data analyzed		
1	Number of rows	3	
1	Number of columns	2	
		l l	

UninfectedInfected

Answer:

The proportion of cane toads infected by intestinal parasites varies significantly between the 3 different areas of Queensland (p=0.0015), the animals being more likely to be parasitized in Rockhampton and Mackay than in Bowen.

Table Analyzed	Cane toad
Chi-square	
Chi-square, df	12.95, 2
P value	0.0015
P value summary	**
One- or two-tailed	NA
Statistically significant? (alpha<0.05)	Yes
Data analyzed	
Number of rows	3
Number of columns	2

New question:

Is the proportion of infected cane toads lower in Bowen than in the other 2 areas?

P value and statistical significance	
Test	Fisher's exact test
P value	0.0225

P value and statistical significance	
Test	Fisher's exact test
P value	0.0012
	Î.

