

Analysis of Qualitative data

Anne Segonds-Pichon v2020-09

Qualitative data

- = not numerical
- = values taken = usually names (also *nominal*)
 - e.g. genotypes
- Values can be numbers but not numerical
 - e.g. group number = numerical label but not unit of measurement
- Qualitative variable with intrinsic order in their categories = *ordinal*
- Particular case: qualitative variable with 2 categories: *binary* or *dichotomous*
 - e.g. alive/dead or presence/absence

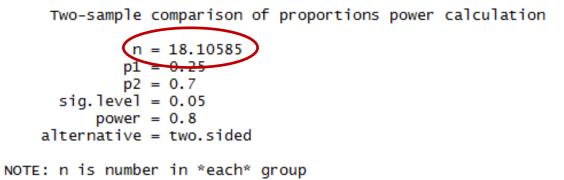
https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

Fisher's exact and Chi²

Example: cats.dat

- Cats trained to line dance
- 2 different rewards: food or affection
- **Question**: Is there a difference between the rewards?

- Is there a significant relationship between the 2 variables?
 - does the reward significantly affect the likelihood of dancing?
- To answer this type of question:
 - Contingency table
 - Fisher's exact or Chi² tests


But first: how many cats do we need?

	Food	Affection
Dance	?	?
No dance	?	?

Power calculation cats.dat

- Preliminary results from a pilot study: **25%** line-danced after having received affection as a reward vs. **70%** after having received food.
- How many cats do we need?

power.prop.test(p1= 0.25, p2= 0.7, sig.level= 0.05, power= 0.8)

Providing the effect size observed in the experiment is similar to the one observed in the pilot study, we
will need 2 samples of 18 to 19 cats to reach significance (p<0.05) with a Fisher's exact test.

Plot cats data (From raw data)

read_tsv("cats.dat") -> cats cats

		T	aining	Dance
1	Food	as	Reward	Yes
2	Food	as	Reward	Yes
3	Food	as	Reward	Yes
4	Food	as	Reward	Yes
5	Food	as	Reward	Yes
6	Food	as	Reward	Yes

```
ggplot(cats, aes(Training, fill=Dance))+
  geom_bar(position="fill", colour="black")+
  scale_fill_brewer(palette = 1)+
  ylab("Fraction")
```


Chi-square and Fisher's tests

- Chi² test very easy to calculate by hand but Fisher's very hard
- Many software will not perform a Fisher's test on tables > 2x2
- Fisher's test more accurate than Chi² test on small samples
- Chi² test more accurate than Fisher's test on large samples
- Chi² test assumptions:
 - 2x2 table: no expected count <5
 - Bigger tables: all expected > 1 and no more than 20% < 5
- Yates's continuity correction
 - All statistical tests work well when their assumptions are met
 - When not: probability Type 1 error increases
 - <u>Solution</u>: corrections that increase p-values
 - Corrections are dangerous: no magic
 - Probably best to avoid them

Chi-square test

• In a chi-square test, the observed frequencies for two or more groups are compared with expected frequencies by chance.

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- O = Observed frequencies
- E = Expected frequencies
- Example with 'cats and dogs'

How are the expected frequencies calculated?

<u>Example</u>: expected frequency of cats line dancing after having received food as a reward.

Direct counts approach:

Expected frequency = (row total)*(column total)/grand total

= 38*76/200 = 14.4

Probability approach: The Multiplicative Rule

Probability of line dancing: **76/200** Probability of receiving food: **38/200**

Expected frequency: (76/200)*(38/200)=0.072: 7.2% of 200 = 14.4

Observed frequencies

	Food	Affection	Total
Dance	28	48	76
No dance	10	114	124
Total	38	162	200

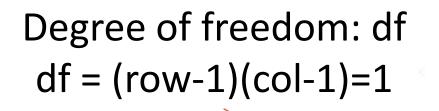
Expected frequencies

	Food	Affection	
Dance	14.4	61.6	
No dance	23.6	100.4	

 $\chi^2 = \sum \frac{(O-E)^2}{E}$

Observed frequencies

	Food	Affection
Dance	28	48
No dance	10	114


Expected frequencies

	Food	Affection	
Dance	14.4	61.6	
No dance	23.6	100.4	

 $Chi^{2} = (28-14.4)^{2}/14.4 + (48-61.6)^{2}/61.6 + (10-23.6)^{2}/23.6 + (114-100.4)^{2}/100.4$ = 25.35

Is 25.35 big enough for the test to be significant?

Is 28.4 big enough for the test to be significant? The old fashion way

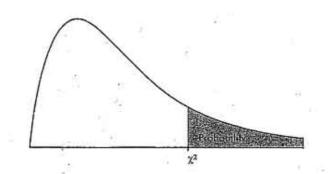
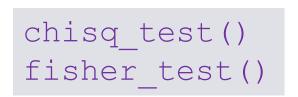


TABLE C: X2 CRITICAL VALUES

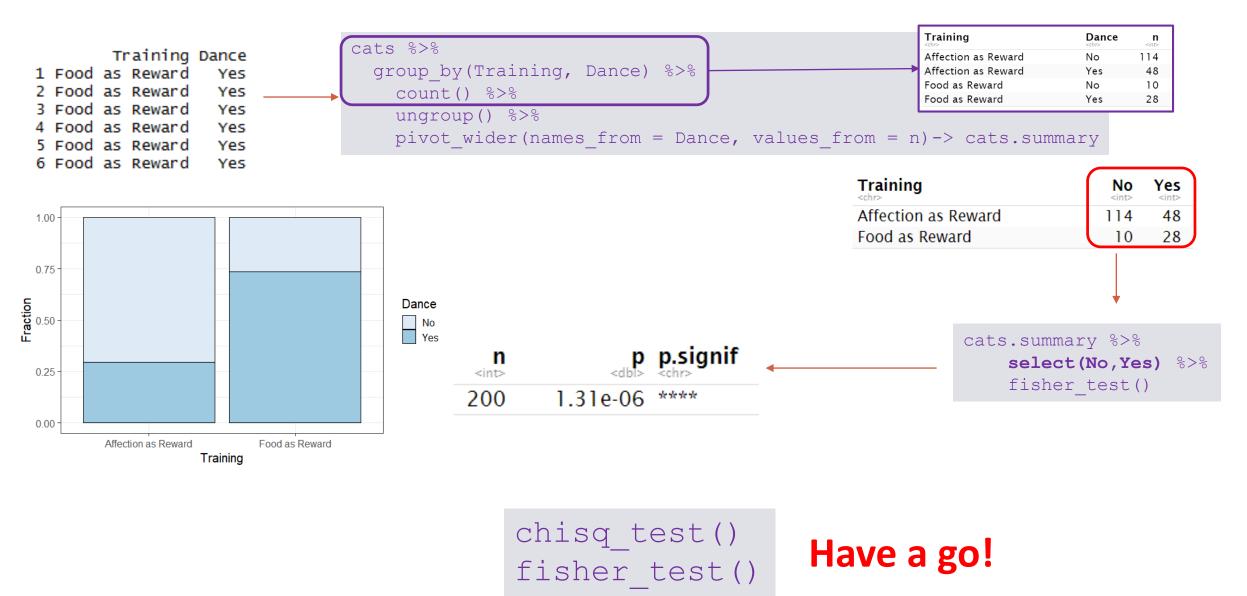

(ritical	1/2	\square
Critical	va	เนธ

	Food	Affection
Dance	28	48
No dance	10	114

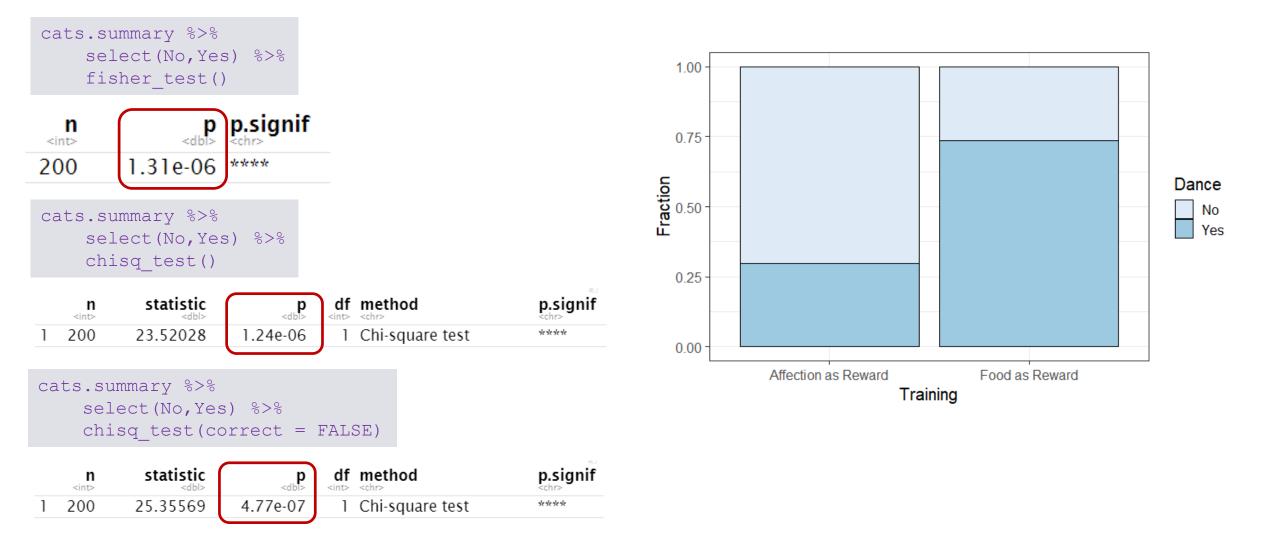
					Tail prob	ability p	140	_	
df	.25	.20	.15	:10	.05	.025	.02	.01	.005
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19

 $\chi^2 = 25.35 > 3.84$ so Yes!

Prepare cats data for the stats



.


	Food	Affection
Dance	?	?
No dance	?	?

Training D	Dance			
1 Food as Reward	Yes	Taslalas		No.
2 Food as Reward	Yes	Training <chr></chr>	<int></int>	<int></int>
3 Food as Reward	Yes	Affection as Reward	114	48
4 Food as Reward	Yes	Food as Reward	10	28
5 Food as Reward	Yes	100d as Keward	10	20
6 Food as Reward	Yes			

Plot cats data (From raw data)

Chi-square and Fisher's Exact tests

Answer: Training significantly affects the likelihood of cats line dancing (p=4.8e-07).